在一个强大的李群的皮层上

Q2 Mathematics
Imed Kédim, Megdiche Hatem
{"title":"在一个强大的李群的皮层上","authors":"Imed Kédim, Megdiche Hatem","doi":"10.1215/KJM/1248983034","DOIUrl":null,"url":null,"abstract":"Let $G$ be a connected and simply connected, nilpotent Lie group. In this paper, we show that the cortex of $G$ is a semi-algebraic set by means of a geometric characterization. It is also shown that the cortex is the image under a linear projection of a countable union of a semi-algebraic sets lying in the tensor product $T$($\\mathfrak{g}$)$\\otimes$ $\\mathfrak{g}$*.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"49 1","pages":"161-172"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1215/KJM/1248983034","citationCount":"2","resultStr":"{\"title\":\"Sur le Cortex d'un groupe de Lie nilpotent\",\"authors\":\"Imed Kédim, Megdiche Hatem\",\"doi\":\"10.1215/KJM/1248983034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a connected and simply connected, nilpotent Lie group. In this paper, we show that the cortex of $G$ is a semi-algebraic set by means of a geometric characterization. It is also shown that the cortex is the image under a linear projection of a countable union of a semi-algebraic sets lying in the tensor product $T$($\\\\mathfrak{g}$)$\\\\otimes$ $\\\\mathfrak{g}$*.\",\"PeriodicalId\":50142,\"journal\":{\"name\":\"Journal of Mathematics of Kyoto University\",\"volume\":\"49 1\",\"pages\":\"161-172\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1215/KJM/1248983034\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics of Kyoto University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/KJM/1248983034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1248983034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

设$G$是连通且单连通的幂零李群。本文用几何刻划的方法证明了$G$的皮质是一个半代数集。还证明了皮层是半代数集的可数并集的线性投影下的图像,它位于张量积$T$($\mathfrak{g}$)$\o乘以$ $\mathfrak{g}$*。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sur le Cortex d'un groupe de Lie nilpotent
Let $G$ be a connected and simply connected, nilpotent Lie group. In this paper, we show that the cortex of $G$ is a semi-algebraic set by means of a geometric characterization. It is also shown that the cortex is the image under a linear projection of a countable union of a semi-algebraic sets lying in the tensor product $T$($\mathfrak{g}$)$\otimes$ $\mathfrak{g}$*.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信