{"title":"在一个强大的李群的皮层上","authors":"Imed Kédim, Megdiche Hatem","doi":"10.1215/KJM/1248983034","DOIUrl":null,"url":null,"abstract":"Let $G$ be a connected and simply connected, nilpotent Lie group. In this paper, we show that the cortex of $G$ is a semi-algebraic set by means of a geometric characterization. It is also shown that the cortex is the image under a linear projection of a countable union of a semi-algebraic sets lying in the tensor product $T$($\\mathfrak{g}$)$\\otimes$ $\\mathfrak{g}$*.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"49 1","pages":"161-172"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1215/KJM/1248983034","citationCount":"2","resultStr":"{\"title\":\"Sur le Cortex d'un groupe de Lie nilpotent\",\"authors\":\"Imed Kédim, Megdiche Hatem\",\"doi\":\"10.1215/KJM/1248983034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a connected and simply connected, nilpotent Lie group. In this paper, we show that the cortex of $G$ is a semi-algebraic set by means of a geometric characterization. It is also shown that the cortex is the image under a linear projection of a countable union of a semi-algebraic sets lying in the tensor product $T$($\\\\mathfrak{g}$)$\\\\otimes$ $\\\\mathfrak{g}$*.\",\"PeriodicalId\":50142,\"journal\":{\"name\":\"Journal of Mathematics of Kyoto University\",\"volume\":\"49 1\",\"pages\":\"161-172\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1215/KJM/1248983034\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics of Kyoto University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/KJM/1248983034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1248983034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Let $G$ be a connected and simply connected, nilpotent Lie group. In this paper, we show that the cortex of $G$ is a semi-algebraic set by means of a geometric characterization. It is also shown that the cortex is the image under a linear projection of a countable union of a semi-algebraic sets lying in the tensor product $T$($\mathfrak{g}$)$\otimes$ $\mathfrak{g}$*.
期刊介绍:
Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.