克莱因三次立方的范诺曲面

Q2 Mathematics
X. Roulleau
{"title":"克莱因三次立方的范诺曲面","authors":"X. Roulleau","doi":"10.1215/KJM/1248983032","DOIUrl":null,"url":null,"abstract":"We prove that the Klein cubic threefold $F$ is the only smooth cubic threefold which has an automorphism of order $11$. We compute the period lattice of the intermediate Jacobian of $F$ and study its Fano surface $S$. We compute also the set of fibrations of $S$ onto a curve of positive genus and the intersection between the fibres of these fibrations. These fibres generate an index $2$ sub-group of the Neron-Severi group and we obtain a set of generators of this group. The Neron-Severi group of $S$ has rank $25=h^{1,1}$ and discriminant $11^{10}$.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"49 1","pages":"113-129"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"The Fano surface of the Klein cubic threefold\",\"authors\":\"X. Roulleau\",\"doi\":\"10.1215/KJM/1248983032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the Klein cubic threefold $F$ is the only smooth cubic threefold which has an automorphism of order $11$. We compute the period lattice of the intermediate Jacobian of $F$ and study its Fano surface $S$. We compute also the set of fibrations of $S$ onto a curve of positive genus and the intersection between the fibres of these fibrations. These fibres generate an index $2$ sub-group of the Neron-Severi group and we obtain a set of generators of this group. The Neron-Severi group of $S$ has rank $25=h^{1,1}$ and discriminant $11^{10}$.\",\"PeriodicalId\":50142,\"journal\":{\"name\":\"Journal of Mathematics of Kyoto University\",\"volume\":\"49 1\",\"pages\":\"113-129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics of Kyoto University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/KJM/1248983032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1248983032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 19

摘要

证明了克莱因三次元$F$是唯一具有11阶自同构的光滑三次元$F$。我们计算了F的中间雅可比矩阵的周期格,并研究了它的Fano曲面。我们还计算了$S$在正属曲线上的纤维集和这些纤维之间的交点。这些纤维产生了Neron-Severi群的index $2$子群,我们得到了该群的一组发生器。$S$的Neron-Severi群的秩$25=h^{1,1}$和判别式$11^{10}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Fano surface of the Klein cubic threefold
We prove that the Klein cubic threefold $F$ is the only smooth cubic threefold which has an automorphism of order $11$. We compute the period lattice of the intermediate Jacobian of $F$ and study its Fano surface $S$. We compute also the set of fibrations of $S$ onto a curve of positive genus and the intersection between the fibres of these fibrations. These fibres generate an index $2$ sub-group of the Neron-Severi group and we obtain a set of generators of this group. The Neron-Severi group of $S$ has rank $25=h^{1,1}$ and discriminant $11^{10}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信