射影空间上主束的巴比伦塔定理

Q2 Mathematics
I. Biswas, I. Coandă, G. Trautmann
{"title":"射影空间上主束的巴比伦塔定理","authors":"I. Biswas, I. Coandă, G. Trautmann","doi":"10.1215/KJM/1248983030","DOIUrl":null,"url":null,"abstract":"We generalise the variant of the Babylonian tower theorem for vector bundles on projective spaces proved by I. Coanda and G. Trautmann (2006) to the case of principal $G$-bundles over projective spaces, where $G$ is a linear algebraic group defined over an algebraically closed field. In course of the proofs some new insight into the structure of such principal $G$-bundles is obtained.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"49 1","pages":"69-82"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Babylonian tower theorem for principal bundles over projective spaces\",\"authors\":\"I. Biswas, I. Coandă, G. Trautmann\",\"doi\":\"10.1215/KJM/1248983030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalise the variant of the Babylonian tower theorem for vector bundles on projective spaces proved by I. Coanda and G. Trautmann (2006) to the case of principal $G$-bundles over projective spaces, where $G$ is a linear algebraic group defined over an algebraically closed field. In course of the proofs some new insight into the structure of such principal $G$-bundles is obtained.\",\"PeriodicalId\":50142,\"journal\":{\"name\":\"Journal of Mathematics of Kyoto University\",\"volume\":\"49 1\",\"pages\":\"69-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics of Kyoto University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/KJM/1248983030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/KJM/1248983030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

将I. Coanda和G. Trautmann(2006)证明的关于射影空间上向量束的巴比伦塔定理的变式推广到射影空间上的主$G$-束的情况,其中$G$是定义在代数闭域上的线性代数群。在证明过程中,对这类主$G$-束的结构得到了一些新的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Babylonian tower theorem for principal bundles over projective spaces
We generalise the variant of the Babylonian tower theorem for vector bundles on projective spaces proved by I. Coanda and G. Trautmann (2006) to the case of principal $G$-bundles over projective spaces, where $G$ is a linear algebraic group defined over an algebraically closed field. In course of the proofs some new insight into the structure of such principal $G$-bundles is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信