非常指标体积Riemann-Finsler曲面上的gauss - bonnet型公式

Q2 Mathematics
J. Itoh, S. Sabau, H. Shimada
{"title":"非常指标体积Riemann-Finsler曲面上的gauss - bonnet型公式","authors":"J. Itoh, S. Sabau, H. Shimada","doi":"10.1215/0023608X-2009-008","DOIUrl":null,"url":null,"abstract":"We prove a Gauss-Bonnet type formula for Riemann-Finsler surfaces of non-constant indicatrix volume and with regular piecewise smooth boundary. We give a Hadamard type theorem for N-parallels of a Landsberg surface.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"50 1","pages":"165-192"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1215/0023608X-2009-008","citationCount":"7","resultStr":"{\"title\":\"A Gauss-Bonnet-type formula on Riemann-Finsler surfaces with nonconstant indicatrix volume\",\"authors\":\"J. Itoh, S. Sabau, H. Shimada\",\"doi\":\"10.1215/0023608X-2009-008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a Gauss-Bonnet type formula for Riemann-Finsler surfaces of non-constant indicatrix volume and with regular piecewise smooth boundary. We give a Hadamard type theorem for N-parallels of a Landsberg surface.\",\"PeriodicalId\":50142,\"journal\":{\"name\":\"Journal of Mathematics of Kyoto University\",\"volume\":\"50 1\",\"pages\":\"165-192\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1215/0023608X-2009-008\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics of Kyoto University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/0023608X-2009-008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/0023608X-2009-008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7

摘要

证明了具有规则分段光滑边界的非常指标体积Riemann-Finsler曲面的Gauss-Bonnet型公式。给出了兰兹伯曲面n个平行线的Hadamard型定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Gauss-Bonnet-type formula on Riemann-Finsler surfaces with nonconstant indicatrix volume
We prove a Gauss-Bonnet type formula for Riemann-Finsler surfaces of non-constant indicatrix volume and with regular piecewise smooth boundary. We give a Hadamard type theorem for N-parallels of a Landsberg surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信