SU(1,1)的泛覆盖SU?(1,1)和张量积的幺正表示

Q2 Mathematics
G. Tomasini, B. Orsted
{"title":"SU(1,1)的泛覆盖SU?(1,1)和张量积的幺正表示","authors":"G. Tomasini, B. Orsted","doi":"10.1215/21562261-2642413","DOIUrl":null,"url":null,"abstract":"In this paper we initiate a study of the relation between weight modules for simple Lie algebras and unitary representations of the corresponding simply-connected Lie groups. In particular we consider in detail from this point of view the universal covering group of SU(1,1), including new results on the discrete part of tensor products of irreducible representations. As a consequence of these results, we show that the set of smooth vectors of the tensor product intersects trivially some of the representations in the discrete spectrum.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"54 1","pages":"311-352"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1215/21562261-2642413","citationCount":"2","resultStr":"{\"title\":\"Unitary representations of the universal cover of SU(1,1) SU?(1,1) and tensor products\",\"authors\":\"G. Tomasini, B. Orsted\",\"doi\":\"10.1215/21562261-2642413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we initiate a study of the relation between weight modules for simple Lie algebras and unitary representations of the corresponding simply-connected Lie groups. In particular we consider in detail from this point of view the universal covering group of SU(1,1), including new results on the discrete part of tensor products of irreducible representations. As a consequence of these results, we show that the set of smooth vectors of the tensor product intersects trivially some of the representations in the discrete spectrum.\",\"PeriodicalId\":50142,\"journal\":{\"name\":\"Journal of Mathematics of Kyoto University\",\"volume\":\"54 1\",\"pages\":\"311-352\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1215/21562261-2642413\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics of Kyoto University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2642413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/21562261-2642413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了单李代数的权模与相应单连通李群的酉表示之间的关系。特别地,我们从这个角度详细地考虑了SU(1,1)的全称覆盖群,包括关于不可约表示的张量积离散部分的新结果。作为这些结果的结果,我们证明了张量积的光滑向量集合与离散谱中的一些表示平凡相交。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unitary representations of the universal cover of SU(1,1) SU?(1,1) and tensor products
In this paper we initiate a study of the relation between weight modules for simple Lie algebras and unitary representations of the corresponding simply-connected Lie groups. In particular we consider in detail from this point of view the universal covering group of SU(1,1), including new results on the discrete part of tensor products of irreducible representations. As a consequence of these results, we show that the set of smooth vectors of the tensor product intersects trivially some of the representations in the discrete spectrum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信