量子连续$\mathfrak{gl}_{\infty}$:表示的半无限构造

Q2 Mathematics
B. Feigin, E. Feigin, M. Jimbo, T. Miwa, E. Mukhin
{"title":"量子连续$\\mathfrak{gl}_{\\infty}$:表示的半无限构造","authors":"B. Feigin, E. Feigin, M. Jimbo, T. Miwa, E. Mukhin","doi":"10.1215/21562261-1214375","DOIUrl":null,"url":null,"abstract":"We begin a study of the representation theory of quantum continuous $\\mathfrak{gl}_\\infty$, which we denote by $\\mathcal E$. This algebra depends on two parameters and is a deformed version of the enveloping algebra of the Lie algebra of difference operators acting on the space of Laurent polynomials in one variable. Fundamental representations of $\\mathcal E$ are labeled by a continuous parameter $u\\in {\\mathbb C}$. The representation theory of $\\mathcal E$ has many properties familiar from the representation theory of $\\mathfrak{gl}_\\infty$: vector representations, Fock modules, semi-infinite constructions of modules. Using tensor products of vector representations, we construct surjective homomorphisms from $\\mathcal E$ to spherical double affine Hecke algebras $S\\ddot H_N$ for all $N$. A key step in this construction is an identification of a natural bases of the tensor products of vector representations with Macdonald polynomials. We also show that one of the Fock representations is isomorphic to the module constructed earlier by means of the $K$-theory of Hilbert schemes.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"51 1","pages":"337-364"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1215/21562261-1214375","citationCount":"86","resultStr":"{\"title\":\"Quantum continuous $\\\\mathfrak{gl}_{\\\\infty}$: Semiinfinite construction of representations\",\"authors\":\"B. Feigin, E. Feigin, M. Jimbo, T. Miwa, E. Mukhin\",\"doi\":\"10.1215/21562261-1214375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We begin a study of the representation theory of quantum continuous $\\\\mathfrak{gl}_\\\\infty$, which we denote by $\\\\mathcal E$. This algebra depends on two parameters and is a deformed version of the enveloping algebra of the Lie algebra of difference operators acting on the space of Laurent polynomials in one variable. Fundamental representations of $\\\\mathcal E$ are labeled by a continuous parameter $u\\\\in {\\\\mathbb C}$. The representation theory of $\\\\mathcal E$ has many properties familiar from the representation theory of $\\\\mathfrak{gl}_\\\\infty$: vector representations, Fock modules, semi-infinite constructions of modules. Using tensor products of vector representations, we construct surjective homomorphisms from $\\\\mathcal E$ to spherical double affine Hecke algebras $S\\\\ddot H_N$ for all $N$. A key step in this construction is an identification of a natural bases of the tensor products of vector representations with Macdonald polynomials. We also show that one of the Fock representations is isomorphic to the module constructed earlier by means of the $K$-theory of Hilbert schemes.\",\"PeriodicalId\":50142,\"journal\":{\"name\":\"Journal of Mathematics of Kyoto University\",\"volume\":\"51 1\",\"pages\":\"337-364\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1215/21562261-1214375\",\"citationCount\":\"86\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics of Kyoto University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-1214375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/21562261-1214375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 86

摘要

我们开始研究量子连续的表示理论$\mathfrak{gl}_\infty$,我们用$\mathcal E$表示。该代数依赖于两个参数,是作用于一元洛朗多项式空间的差分算子李代数的包络代数的变形版本。$\mathcal E$的基本表示用一个连续参数$u\in {\mathbb C}$来标记。$\mathcal E$的表示理论有许多与$\mathfrak{gl}_\infty$的表示理论相似的性质:向量表示、Fock模块、模块的半无限构造。利用向量表示的张量积,构造了从$\mathcal E$到所有$N$的球面双仿射Hecke代数$S\ddot H_N$的满射同态。这个构造的关键步骤是确定向量表示与麦克唐纳多项式的张量积的自然基。我们还证明了其中一个Fock表示与先前利用Hilbert格式的$K$ -理论构造的模块是同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum continuous $\mathfrak{gl}_{\infty}$: Semiinfinite construction of representations
We begin a study of the representation theory of quantum continuous $\mathfrak{gl}_\infty$, which we denote by $\mathcal E$. This algebra depends on two parameters and is a deformed version of the enveloping algebra of the Lie algebra of difference operators acting on the space of Laurent polynomials in one variable. Fundamental representations of $\mathcal E$ are labeled by a continuous parameter $u\in {\mathbb C}$. The representation theory of $\mathcal E$ has many properties familiar from the representation theory of $\mathfrak{gl}_\infty$: vector representations, Fock modules, semi-infinite constructions of modules. Using tensor products of vector representations, we construct surjective homomorphisms from $\mathcal E$ to spherical double affine Hecke algebras $S\ddot H_N$ for all $N$. A key step in this construction is an identification of a natural bases of the tensor products of vector representations with Macdonald polynomials. We also show that one of the Fock representations is isomorphic to the module constructed earlier by means of the $K$-theory of Hilbert schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信