无角截断空间齐次玻尔兹曼方程弱解的平滑效应

Q2 Mathematics
Radjesvarane Alexandre, Y. Morimoto, S. Ukai, Chao-Jiang Xu, Tong Yang
{"title":"无角截断空间齐次玻尔兹曼方程弱解的平滑效应","authors":"Radjesvarane Alexandre, Y. Morimoto, S. Ukai, Chao-Jiang Xu, Tong Yang","doi":"10.1215/21562261-1625154","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the spatially homogeneous Boltzmann equation without angular cutoff. We prove that every $L^1$ weak solution to the Cauchy problem with finite moments of all order acquires the $C^\\infty$ regularity in the velocity variable for the positive time.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"52 1","pages":"433-463"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1215/21562261-1625154","citationCount":"49","resultStr":"{\"title\":\"Smoothing effect of weak solutions for the spatially homogeneous Boltzmann Equation without angular cutoff\",\"authors\":\"Radjesvarane Alexandre, Y. Morimoto, S. Ukai, Chao-Jiang Xu, Tong Yang\",\"doi\":\"10.1215/21562261-1625154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the spatially homogeneous Boltzmann equation without angular cutoff. We prove that every $L^1$ weak solution to the Cauchy problem with finite moments of all order acquires the $C^\\\\infty$ regularity in the velocity variable for the positive time.\",\"PeriodicalId\":50142,\"journal\":{\"name\":\"Journal of Mathematics of Kyoto University\",\"volume\":\"52 1\",\"pages\":\"433-463\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1215/21562261-1625154\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics of Kyoto University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-1625154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/21562261-1625154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 49

摘要

本文考虑无角截断的空间齐次玻尔兹曼方程。证明了所有阶有限矩Cauchy问题的$L^1$弱解在正时间下速度变量具有$C^\infty$正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smoothing effect of weak solutions for the spatially homogeneous Boltzmann Equation without angular cutoff
In this paper, we consider the spatially homogeneous Boltzmann equation without angular cutoff. We prove that every $L^1$ weak solution to the Cauchy problem with finite moments of all order acquires the $C^\infty$ regularity in the velocity variable for the positive time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信