关于Castelnuovo定理及其在模上的应用

Q2 Mathematics
Abel Castorena, C. Ciliberto
{"title":"关于Castelnuovo定理及其在模上的应用","authors":"Abel Castorena, C. Ciliberto","doi":"10.1215/21562261-1299909","DOIUrl":null,"url":null,"abstract":"In this paper we prove a theorem stated by Castelnuovo which bounds the \ndimension of linear systems of plane curves in terms of two invariants, one of which is \nthe genus of the curves in the system. This extends a previous result of Castelnuovo and \nEnriques.We classify linear systems whose dimension belongs to certain intervals which \nnaturally arise from Castelnuovo’s theorem. Then we make an application to the followingmoduli \nproblem: what is themaximu mnumber ofmoduli of curves of geometric genus \ng varying in a linear system on a surface? It turns out that, for g ≥ 22, theanswer is 2g+1, \nand it is attained by trigonal canonical curves varying on a balanced rational normal \nscroll.","PeriodicalId":50142,"journal":{"name":"Journal of Mathematics of Kyoto University","volume":"51 1","pages":"633-645"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1215/21562261-1299909","citationCount":"3","resultStr":"{\"title\":\"On a theorem of Castelnuovo and applications to moduli\",\"authors\":\"Abel Castorena, C. Ciliberto\",\"doi\":\"10.1215/21562261-1299909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove a theorem stated by Castelnuovo which bounds the \\ndimension of linear systems of plane curves in terms of two invariants, one of which is \\nthe genus of the curves in the system. This extends a previous result of Castelnuovo and \\nEnriques.We classify linear systems whose dimension belongs to certain intervals which \\nnaturally arise from Castelnuovo’s theorem. Then we make an application to the followingmoduli \\nproblem: what is themaximu mnumber ofmoduli of curves of geometric genus \\ng varying in a linear system on a surface? It turns out that, for g ≥ 22, theanswer is 2g+1, \\nand it is attained by trigonal canonical curves varying on a balanced rational normal \\nscroll.\",\"PeriodicalId\":50142,\"journal\":{\"name\":\"Journal of Mathematics of Kyoto University\",\"volume\":\"51 1\",\"pages\":\"633-645\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1215/21562261-1299909\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics of Kyoto University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-1299909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics of Kyoto University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/21562261-1299909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

本文证明了Castelnuovo提出的一个定理,该定理用两个不变量限定平面曲线线性系统的维数,其中一个不变量是系统中曲线的格。这扩展了Castelnuovo和Enriques之前的结果。我们对维数属于一定区间的线性系统进行分类,这些区间是由Castelnuovo定理自然产生的。然后我们将其应用于以下模问题:在一个平面上的线性系统中,几何格g变化曲线的模的最大个数是多少?结果表明,当g≥22时,答案是2g+1,并且它是通过在平衡有理法线涡旋上变化的三角规范曲线获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a theorem of Castelnuovo and applications to moduli
In this paper we prove a theorem stated by Castelnuovo which bounds the dimension of linear systems of plane curves in terms of two invariants, one of which is the genus of the curves in the system. This extends a previous result of Castelnuovo and Enriques.We classify linear systems whose dimension belongs to certain intervals which naturally arise from Castelnuovo’s theorem. Then we make an application to the followingmoduli problem: what is themaximu mnumber ofmoduli of curves of geometric genus g varying in a linear system on a surface? It turns out that, for g ≥ 22, theanswer is 2g+1, and it is attained by trigonal canonical curves varying on a balanced rational normal scroll.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Papers on pure and applied mathematics intended for publication in the Kyoto Journal of Mathematics should be written in English, French, or German. Submission of a paper acknowledges that the paper is original and is not submitted elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信