{"title":"基于遗传算法和特征选择的智能入侵检测系统","authors":"Hossein Shirazi, Y. Kalaji","doi":"10.1234/MJEE.V4I1.154","DOIUrl":null,"url":null,"abstract":"There has been a rapid growth in the numbers of attacks to the information and communication systems. Also, we witness smarter behaviors from the attackers. Thus, to prevent our systems from these attackers, we need to create smarter intrusion detection systems. In this paper, a new intelligent intrusion detection system has been proposed using genetic algorithms. In this system, at first, the network connection features were ranked according to their importance in detecting attack using information theory measures. Then, the network traffic linear classifiers based on genetic algorithms have been designed. These classifiers were trained and tested using KDD99 data sets. A detection engine based on these classifiers was build and experimented. The experimental results showed a detection rate up till to 92.94%. This engine can be used in real-time mode.","PeriodicalId":37804,"journal":{"name":"Majlesi Journal of Electrical Engineering","volume":"4 1","pages":"33-43"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"An Intelligent Intrusion Detection System Using Genetic Algorithms and Features Selection\",\"authors\":\"Hossein Shirazi, Y. Kalaji\",\"doi\":\"10.1234/MJEE.V4I1.154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been a rapid growth in the numbers of attacks to the information and communication systems. Also, we witness smarter behaviors from the attackers. Thus, to prevent our systems from these attackers, we need to create smarter intrusion detection systems. In this paper, a new intelligent intrusion detection system has been proposed using genetic algorithms. In this system, at first, the network connection features were ranked according to their importance in detecting attack using information theory measures. Then, the network traffic linear classifiers based on genetic algorithms have been designed. These classifiers were trained and tested using KDD99 data sets. A detection engine based on these classifiers was build and experimented. The experimental results showed a detection rate up till to 92.94%. This engine can be used in real-time mode.\",\"PeriodicalId\":37804,\"journal\":{\"name\":\"Majlesi Journal of Electrical Engineering\",\"volume\":\"4 1\",\"pages\":\"33-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Majlesi Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1234/MJEE.V4I1.154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majlesi Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1234/MJEE.V4I1.154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
An Intelligent Intrusion Detection System Using Genetic Algorithms and Features Selection
There has been a rapid growth in the numbers of attacks to the information and communication systems. Also, we witness smarter behaviors from the attackers. Thus, to prevent our systems from these attackers, we need to create smarter intrusion detection systems. In this paper, a new intelligent intrusion detection system has been proposed using genetic algorithms. In this system, at first, the network connection features were ranked according to their importance in detecting attack using information theory measures. Then, the network traffic linear classifiers based on genetic algorithms have been designed. These classifiers were trained and tested using KDD99 data sets. A detection engine based on these classifiers was build and experimented. The experimental results showed a detection rate up till to 92.94%. This engine can be used in real-time mode.
期刊介绍:
The scope of Majlesi Journal of Electrcial Engineering (MJEE) is ranging from mathematical foundation to practical engineering design in all areas of electrical engineering. The editorial board is international and original unpublished papers are welcome from throughout the world. The journal is devoted primarily to research papers, but very high quality survey and tutorial papers are also published. There is no publication charge for the authors.