在传统的La0.5Sr0.5MnO3−δ阴极中,tio2诱导的电子变化使质子导电固体氧化物燃料电池具有高性能

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yufeng Li  (, ), Shoufu Yu  (, ), Hailu Dai  (, ), Yangsen Xu  (, ), Lei Bi  (, )
{"title":"在传统的La0.5Sr0.5MnO3−δ阴极中,tio2诱导的电子变化使质子导电固体氧化物燃料电池具有高性能","authors":"Yufeng Li \n (,&nbsp;),&nbsp;Shoufu Yu \n (,&nbsp;),&nbsp;Hailu Dai \n (,&nbsp;),&nbsp;Yangsen Xu \n (,&nbsp;),&nbsp;Lei Bi \n (,&nbsp;)","doi":"10.1007/s40843-023-2519-9","DOIUrl":null,"url":null,"abstract":"<div><p>Sr-doped LaMnO<sub>3</sub>, as one of the most successful cathodes for solid oxide fuel cells (SOFCs), can effectively function at high temperatures. However, its cathode kinetics considerably decreases with decreasing temperature, rendering it unsuitable for SOFCs operating at intermediate temperatures. In this study, La<sub>0.5</sub>Sr<sub>0.5</sub>MnO<sub>3−<i>δ</i></sub>(LSM) is coated with TiO<sub>2</sub> to create the LSM + TiO<sub>2</sub> cathode. TiO<sub>2</sub> is shown to modify the electronic structure at the LSM/TiO<sub>2</sub> interface, allowing for charge accumulation for the O atoms at the interface. The activated O atoms enhance the formation of oxygen vacancies, which benefit the oxygen diffusion ability. Using LSM + TiO<sub>2</sub> as a cathode for proton-conducting SOFCs (H-SOFCs) operating at intermediate temperatures, the corresponding fuel cell demonstrated enhanced cell output performance compared with cells employing solely LSM or TiO<sub>2</sub> cathodes, exhibiting the synergistic effect of combining LSM and TiO<sub>2</sub>. Additionally, the LSM + TiO<sub>2</sub> cells achieved a power output of 1118 mWcm<sup>−2</sup> at 700°C, the highest yet reported value for H-SOFCs with LSM cathodes. LSM + TiO<sub>2</sub> was demonstrated to be stable against CO<sub>2</sub> and steam, allowing for steady functioning of the cell under working conditions, thereby resolving the problem of LSM’s poor performance in H-SOFCs while retaining remarkable stability.\n</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"66 9","pages":"3475 - 3483"},"PeriodicalIF":6.8000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"TiO2-induced electronic change in traditional La0.5Sr0.5MnO3−δ cathode allows high performance of proton-conducting solid oxide fuel cells\",\"authors\":\"Yufeng Li \\n (,&nbsp;),&nbsp;Shoufu Yu \\n (,&nbsp;),&nbsp;Hailu Dai \\n (,&nbsp;),&nbsp;Yangsen Xu \\n (,&nbsp;),&nbsp;Lei Bi \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-023-2519-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sr-doped LaMnO<sub>3</sub>, as one of the most successful cathodes for solid oxide fuel cells (SOFCs), can effectively function at high temperatures. However, its cathode kinetics considerably decreases with decreasing temperature, rendering it unsuitable for SOFCs operating at intermediate temperatures. In this study, La<sub>0.5</sub>Sr<sub>0.5</sub>MnO<sub>3−<i>δ</i></sub>(LSM) is coated with TiO<sub>2</sub> to create the LSM + TiO<sub>2</sub> cathode. TiO<sub>2</sub> is shown to modify the electronic structure at the LSM/TiO<sub>2</sub> interface, allowing for charge accumulation for the O atoms at the interface. The activated O atoms enhance the formation of oxygen vacancies, which benefit the oxygen diffusion ability. Using LSM + TiO<sub>2</sub> as a cathode for proton-conducting SOFCs (H-SOFCs) operating at intermediate temperatures, the corresponding fuel cell demonstrated enhanced cell output performance compared with cells employing solely LSM or TiO<sub>2</sub> cathodes, exhibiting the synergistic effect of combining LSM and TiO<sub>2</sub>. Additionally, the LSM + TiO<sub>2</sub> cells achieved a power output of 1118 mWcm<sup>−2</sup> at 700°C, the highest yet reported value for H-SOFCs with LSM cathodes. LSM + TiO<sub>2</sub> was demonstrated to be stable against CO<sub>2</sub> and steam, allowing for steady functioning of the cell under working conditions, thereby resolving the problem of LSM’s poor performance in H-SOFCs while retaining remarkable stability.\\n</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"66 9\",\"pages\":\"3475 - 3483\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-023-2519-9\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-023-2519-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

锶掺杂LaMnO3作为固体氧化物燃料电池(sofc)最成功的阴极材料之一,可以在高温下有效地发挥作用。然而,它的阴极动力学随着温度的降低而显著降低,使得它不适合在中等温度下工作的sofc。在本研究中,La0.5Sr0.5MnO3−δ(LSM)表面涂覆TiO2形成LSM + TiO2阴极。TiO2修饰了LSM/TiO2界面处的电子结构,使得O原子在界面处电荷积累。活化的O原子促进了氧空位的形成,有利于氧的扩散能力。使用LSM + TiO2作为中间温度下运行的质子导电SOFCs (H-SOFCs)的阴极,与单独使用LSM或TiO2阴极的电池相比,相应的燃料电池表现出更高的电池输出性能,显示出LSM和TiO2结合的协同效应。此外,LSM + TiO2电池在700°C时的输出功率达到1118 mWcm−2,这是目前报道的使用LSM阴极的H-SOFCs的最高输出功率。结果表明,LSM + TiO2对CO2和蒸汽具有稳定的抗氧化性能,可使电池在工作条件下稳定运行,从而解决了LSM在H-SOFCs中性能差的问题,同时保持了显著的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TiO2-induced electronic change in traditional La0.5Sr0.5MnO3−δ cathode allows high performance of proton-conducting solid oxide fuel cells

Sr-doped LaMnO3, as one of the most successful cathodes for solid oxide fuel cells (SOFCs), can effectively function at high temperatures. However, its cathode kinetics considerably decreases with decreasing temperature, rendering it unsuitable for SOFCs operating at intermediate temperatures. In this study, La0.5Sr0.5MnO3−δ(LSM) is coated with TiO2 to create the LSM + TiO2 cathode. TiO2 is shown to modify the electronic structure at the LSM/TiO2 interface, allowing for charge accumulation for the O atoms at the interface. The activated O atoms enhance the formation of oxygen vacancies, which benefit the oxygen diffusion ability. Using LSM + TiO2 as a cathode for proton-conducting SOFCs (H-SOFCs) operating at intermediate temperatures, the corresponding fuel cell demonstrated enhanced cell output performance compared with cells employing solely LSM or TiO2 cathodes, exhibiting the synergistic effect of combining LSM and TiO2. Additionally, the LSM + TiO2 cells achieved a power output of 1118 mWcm−2 at 700°C, the highest yet reported value for H-SOFCs with LSM cathodes. LSM + TiO2 was demonstrated to be stable against CO2 and steam, allowing for steady functioning of the cell under working conditions, thereby resolving the problem of LSM’s poor performance in H-SOFCs while retaining remarkable stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信