Huyen Thi Phuong Tran, Hung Sy Nguyen, Stéphane Bouissou
{"title":"应用数字图像相关方法对岩石模拟材料中延伸至剪切断裂过渡进行实验分析","authors":"Huyen Thi Phuong Tran, Hung Sy Nguyen, Stéphane Bouissou","doi":"10.1007/s10704-023-00734-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the results of axi-symmetric extension tests on a Rock Analogue Material that showed a continuous transition from extension fracture to shear fracture with an increase in compressive stress. The analysis used non destructive full-field experimental methods—digital image correlation (DIC), as well as the post-mortem specimens observation. When the mean stress was small, the fractures formed through the mode I cracking at tensile equal to the material tensile strength with smooth surfaces. These surfaces became rougher or delicate plumose patterns as the mean stress increased. Fracture angles also increased progressively from extension fractures to shear fractures. Hybrid fractures formed under mixed tensile and compressive stress states and presented plumose patterns on the rupture surface. DIC results showed the localisation of tensile deformation and the acceleration of deformation at the zone that induced the fracture. The fracture caused a reduction of deformation in the surrounding areas, which showed a release of elastic energy stored in the material during the propagation of fracture.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"243 1","pages":"91 - 104"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-023-00734-7.pdf","citationCount":"1","resultStr":"{\"title\":\"Experimental analysis of the extension to shear fracture transition in a rock analogue material using digital image correlation method\",\"authors\":\"Huyen Thi Phuong Tran, Hung Sy Nguyen, Stéphane Bouissou\",\"doi\":\"10.1007/s10704-023-00734-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents the results of axi-symmetric extension tests on a Rock Analogue Material that showed a continuous transition from extension fracture to shear fracture with an increase in compressive stress. The analysis used non destructive full-field experimental methods—digital image correlation (DIC), as well as the post-mortem specimens observation. When the mean stress was small, the fractures formed through the mode I cracking at tensile equal to the material tensile strength with smooth surfaces. These surfaces became rougher or delicate plumose patterns as the mean stress increased. Fracture angles also increased progressively from extension fractures to shear fractures. Hybrid fractures formed under mixed tensile and compressive stress states and presented plumose patterns on the rupture surface. DIC results showed the localisation of tensile deformation and the acceleration of deformation at the zone that induced the fracture. The fracture caused a reduction of deformation in the surrounding areas, which showed a release of elastic energy stored in the material during the propagation of fracture.</p></div>\",\"PeriodicalId\":590,\"journal\":{\"name\":\"International Journal of Fracture\",\"volume\":\"243 1\",\"pages\":\"91 - 104\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10704-023-00734-7.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fracture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10704-023-00734-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-023-00734-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental analysis of the extension to shear fracture transition in a rock analogue material using digital image correlation method
This paper presents the results of axi-symmetric extension tests on a Rock Analogue Material that showed a continuous transition from extension fracture to shear fracture with an increase in compressive stress. The analysis used non destructive full-field experimental methods—digital image correlation (DIC), as well as the post-mortem specimens observation. When the mean stress was small, the fractures formed through the mode I cracking at tensile equal to the material tensile strength with smooth surfaces. These surfaces became rougher or delicate plumose patterns as the mean stress increased. Fracture angles also increased progressively from extension fractures to shear fractures. Hybrid fractures formed under mixed tensile and compressive stress states and presented plumose patterns on the rupture surface. DIC results showed the localisation of tensile deformation and the acceleration of deformation at the zone that induced the fracture. The fracture caused a reduction of deformation in the surrounding areas, which showed a release of elastic energy stored in the material during the propagation of fracture.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.