Kathrin Lukas, Stefan Dötterl, Manfred Ayasse, Hannah Burger
{"title":"蜜蜂同样被不显眼的黑德拉螺旋花的视觉和嗅觉线索所吸引","authors":"Kathrin Lukas, Stefan Dötterl, Manfred Ayasse, Hannah Burger","doi":"10.1007/s00049-023-00392-0","DOIUrl":null,"url":null,"abstract":"<div><p>Wild bees are heavily declining worldwide except for a few species, such as <i>Colletes hederae</i>, which is spreading in its distribution throughout Europe. <i>Colletes hederae</i> mainly forages on ivy (<i>Hedera helix</i>) which is widespread in Europe and the plants’ availability is thought to contribute to the successful spread of <i>C. hederae</i>. A rapid location of the plants using visual and/or olfactory floral cues would allow the bee to efficiently forage. Beside bee visitors, the flowers attract a high variety of other insects, such as <i>Vespula</i> wasps that were recently investigated regarding their floral-cue preferences. The aim of this study was to investigate the communication between <i>C. hederae</i> and its <i>H. helix</i> host flowers, and to compare the results with that previously obtained with <i>V. germanica</i> wasps. We identified headspace compounds detectable by the bees using gas chromatography coupled to electroantennography (GC-EAD) and performed behavioral experiments to both compare the attractiveness of visual and olfactory floral cues and to determine the attractiveness of a synthetic mixture composed of physiologically active compounds. In the GC-EAD analyses, bees responded to 15 flower-specific compounds of various chemical classes, of which 4-oxoisophorone, (<i>E</i>)-linalool-oxide furanoid, and acetophenone were the most abundant in the floral scent. In the bioassays, visual and olfactory flower cues were equally attractive for bees, but a combination of both cues was needed to elicit not only approach responses but also landings. A synthetic mixture of the EAD-active compounds was attractive to the bees, but to a lesser extent than the natural scent of <i>H. helix</i> flowers. The bees’ integrations of different floral-cue modalities in its search image and its strong antennal responses elicited by various floral scent compounds make <i>C. hederae</i> highly effective in finding its host flowers. In comparison to <i>V. germanica</i> wasps, the bees relied stronger on visual cues than the wasps do, but both species showed the highest attraction when presented with a combination of the cues.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"33 5","pages":"135 - 143"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00049-023-00392-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Colletes hederae bees are equally attracted by visual and olfactory cues of inconspicuous Hedera helix flowers\",\"authors\":\"Kathrin Lukas, Stefan Dötterl, Manfred Ayasse, Hannah Burger\",\"doi\":\"10.1007/s00049-023-00392-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wild bees are heavily declining worldwide except for a few species, such as <i>Colletes hederae</i>, which is spreading in its distribution throughout Europe. <i>Colletes hederae</i> mainly forages on ivy (<i>Hedera helix</i>) which is widespread in Europe and the plants’ availability is thought to contribute to the successful spread of <i>C. hederae</i>. A rapid location of the plants using visual and/or olfactory floral cues would allow the bee to efficiently forage. Beside bee visitors, the flowers attract a high variety of other insects, such as <i>Vespula</i> wasps that were recently investigated regarding their floral-cue preferences. The aim of this study was to investigate the communication between <i>C. hederae</i> and its <i>H. helix</i> host flowers, and to compare the results with that previously obtained with <i>V. germanica</i> wasps. We identified headspace compounds detectable by the bees using gas chromatography coupled to electroantennography (GC-EAD) and performed behavioral experiments to both compare the attractiveness of visual and olfactory floral cues and to determine the attractiveness of a synthetic mixture composed of physiologically active compounds. In the GC-EAD analyses, bees responded to 15 flower-specific compounds of various chemical classes, of which 4-oxoisophorone, (<i>E</i>)-linalool-oxide furanoid, and acetophenone were the most abundant in the floral scent. In the bioassays, visual and olfactory flower cues were equally attractive for bees, but a combination of both cues was needed to elicit not only approach responses but also landings. A synthetic mixture of the EAD-active compounds was attractive to the bees, but to a lesser extent than the natural scent of <i>H. helix</i> flowers. The bees’ integrations of different floral-cue modalities in its search image and its strong antennal responses elicited by various floral scent compounds make <i>C. hederae</i> highly effective in finding its host flowers. In comparison to <i>V. germanica</i> wasps, the bees relied stronger on visual cues than the wasps do, but both species showed the highest attraction when presented with a combination of the cues.</p></div>\",\"PeriodicalId\":515,\"journal\":{\"name\":\"Chemoecology\",\"volume\":\"33 5\",\"pages\":\"135 - 143\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00049-023-00392-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemoecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00049-023-00392-0\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-023-00392-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Colletes hederae bees are equally attracted by visual and olfactory cues of inconspicuous Hedera helix flowers
Wild bees are heavily declining worldwide except for a few species, such as Colletes hederae, which is spreading in its distribution throughout Europe. Colletes hederae mainly forages on ivy (Hedera helix) which is widespread in Europe and the plants’ availability is thought to contribute to the successful spread of C. hederae. A rapid location of the plants using visual and/or olfactory floral cues would allow the bee to efficiently forage. Beside bee visitors, the flowers attract a high variety of other insects, such as Vespula wasps that were recently investigated regarding their floral-cue preferences. The aim of this study was to investigate the communication between C. hederae and its H. helix host flowers, and to compare the results with that previously obtained with V. germanica wasps. We identified headspace compounds detectable by the bees using gas chromatography coupled to electroantennography (GC-EAD) and performed behavioral experiments to both compare the attractiveness of visual and olfactory floral cues and to determine the attractiveness of a synthetic mixture composed of physiologically active compounds. In the GC-EAD analyses, bees responded to 15 flower-specific compounds of various chemical classes, of which 4-oxoisophorone, (E)-linalool-oxide furanoid, and acetophenone were the most abundant in the floral scent. In the bioassays, visual and olfactory flower cues were equally attractive for bees, but a combination of both cues was needed to elicit not only approach responses but also landings. A synthetic mixture of the EAD-active compounds was attractive to the bees, but to a lesser extent than the natural scent of H. helix flowers. The bees’ integrations of different floral-cue modalities in its search image and its strong antennal responses elicited by various floral scent compounds make C. hederae highly effective in finding its host flowers. In comparison to V. germanica wasps, the bees relied stronger on visual cues than the wasps do, but both species showed the highest attraction when presented with a combination of the cues.
期刊介绍:
It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.