{"title":"组态因果模型的鲁棒性与模型选择","authors":"Veli-Pekka Parkkinen, Michael Baumgartner","doi":"10.1177/0049124120986200","DOIUrl":null,"url":null,"abstract":"In recent years, proponents of configurational comparative methods (CCMs) have advanced various dimensions of robustness as instrumental to model selection. But these robustness considerations have not led to computable robustness measures, and they have typically been applied to the analysis of real-life data with unknown underlying causal structures, rendering it impossible to determine exactly how they influence the correctness of selected models. This article develops a computable criterion of fit-robustness, which quantifies the degree to which a CCM model agrees with other models inferred from the same data under systematically varied threshold settings of fit parameters. Based on two extended series of inverse search trials on data simulated from known causal structures, the article moreover provides a precise assessment of the degree to which fit-robustness scoring is conducive to finding a correct causal model and how it compares to other approaches of model selection.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"52 1","pages":"176 - 208"},"PeriodicalIF":6.5000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0049124120986200","citationCount":"10","resultStr":"{\"title\":\"Robustness and Model Selection in Configurational Causal Modeling\",\"authors\":\"Veli-Pekka Parkkinen, Michael Baumgartner\",\"doi\":\"10.1177/0049124120986200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, proponents of configurational comparative methods (CCMs) have advanced various dimensions of robustness as instrumental to model selection. But these robustness considerations have not led to computable robustness measures, and they have typically been applied to the analysis of real-life data with unknown underlying causal structures, rendering it impossible to determine exactly how they influence the correctness of selected models. This article develops a computable criterion of fit-robustness, which quantifies the degree to which a CCM model agrees with other models inferred from the same data under systematically varied threshold settings of fit parameters. Based on two extended series of inverse search trials on data simulated from known causal structures, the article moreover provides a precise assessment of the degree to which fit-robustness scoring is conducive to finding a correct causal model and how it compares to other approaches of model selection.\",\"PeriodicalId\":21849,\"journal\":{\"name\":\"Sociological Methods & Research\",\"volume\":\"52 1\",\"pages\":\"176 - 208\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2021-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0049124120986200\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sociological Methods & Research\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/0049124120986200\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methods & Research","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/0049124120986200","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
Robustness and Model Selection in Configurational Causal Modeling
In recent years, proponents of configurational comparative methods (CCMs) have advanced various dimensions of robustness as instrumental to model selection. But these robustness considerations have not led to computable robustness measures, and they have typically been applied to the analysis of real-life data with unknown underlying causal structures, rendering it impossible to determine exactly how they influence the correctness of selected models. This article develops a computable criterion of fit-robustness, which quantifies the degree to which a CCM model agrees with other models inferred from the same data under systematically varied threshold settings of fit parameters. Based on two extended series of inverse search trials on data simulated from known causal structures, the article moreover provides a precise assessment of the degree to which fit-robustness scoring is conducive to finding a correct causal model and how it compares to other approaches of model selection.
期刊介绍:
Sociological Methods & Research is a quarterly journal devoted to sociology as a cumulative empirical science. The objectives of SMR are multiple, but emphasis is placed on articles that advance the understanding of the field through systematic presentations that clarify methodological problems and assist in ordering the known facts in an area. Review articles will be published, particularly those that emphasize a critical analysis of the status of the arts, but original presentations that are broadly based and provide new research will also be published. Intrinsically, SMR is viewed as substantive journal but one that is highly focused on the assessment of the scientific status of sociology. The scope is broad and flexible, and authors are invited to correspond with the editors about the appropriateness of their articles.