Nina El Najjar, Christine Kaimer, Thomas C. Rösch, P. Graumann
{"title":"枯草芽孢杆菌DNA转位酶SftA的间隔定位和染色体分离活性要求","authors":"Nina El Najjar, Christine Kaimer, Thomas C. Rösch, P. Graumann","doi":"10.1159/000450725","DOIUrl":null,"url":null,"abstract":"Bacillus subtilis possesses 2 DNA translocases that affect late stages of chromosome segregation: SftA separates nonsegregated DNA prior to septum closure, while SpoIIIE rescues septum-entrapped DNA. We provide evidence that SftA is associated with the division machinery via a stretch of 47 amino acids within its N-terminus, suggesting that SftA is recruited by protein-protein interactions with a component of the division machinery. SftA was also recruited to mid-cell in the absence of its first 20 amino acids, which are proposed to contain a membrane-binding motif. Cell fractionation experiments showed that SftA can be found in the cytosolic fraction, and to a minor degree in the membrane fraction, showing that it is a soluble protein in vivo. The expression of truncated SftA constructs led to a dominant sftA deletion phenotype, even at very low induction rates of the truncated proteins, indicating that the incorporation of nonfunctional monomers into SftA hexamers abolishes functionality. Mobility shift experiments and surface plasmon binding studies showed that SftA binds to DNA in a cooperative manner, and demonstrated low ATPase activity when binding to short nucleotides rather than to long stretches of DNA.","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2017-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000450725","citationCount":"3","resultStr":"{\"title\":\"Requirements for Septal Localization and Chromosome Segregation Activity of the DNA Translocase SftA from Bacillus subtilis\",\"authors\":\"Nina El Najjar, Christine Kaimer, Thomas C. Rösch, P. Graumann\",\"doi\":\"10.1159/000450725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacillus subtilis possesses 2 DNA translocases that affect late stages of chromosome segregation: SftA separates nonsegregated DNA prior to septum closure, while SpoIIIE rescues septum-entrapped DNA. We provide evidence that SftA is associated with the division machinery via a stretch of 47 amino acids within its N-terminus, suggesting that SftA is recruited by protein-protein interactions with a component of the division machinery. SftA was also recruited to mid-cell in the absence of its first 20 amino acids, which are proposed to contain a membrane-binding motif. Cell fractionation experiments showed that SftA can be found in the cytosolic fraction, and to a minor degree in the membrane fraction, showing that it is a soluble protein in vivo. The expression of truncated SftA constructs led to a dominant sftA deletion phenotype, even at very low induction rates of the truncated proteins, indicating that the incorporation of nonfunctional monomers into SftA hexamers abolishes functionality. Mobility shift experiments and surface plasmon binding studies showed that SftA binds to DNA in a cooperative manner, and demonstrated low ATPase activity when binding to short nucleotides rather than to long stretches of DNA.\",\"PeriodicalId\":16370,\"journal\":{\"name\":\"Journal of Molecular Microbiology and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000450725\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Microbiology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000450725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000450725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Requirements for Septal Localization and Chromosome Segregation Activity of the DNA Translocase SftA from Bacillus subtilis
Bacillus subtilis possesses 2 DNA translocases that affect late stages of chromosome segregation: SftA separates nonsegregated DNA prior to septum closure, while SpoIIIE rescues septum-entrapped DNA. We provide evidence that SftA is associated with the division machinery via a stretch of 47 amino acids within its N-terminus, suggesting that SftA is recruited by protein-protein interactions with a component of the division machinery. SftA was also recruited to mid-cell in the absence of its first 20 amino acids, which are proposed to contain a membrane-binding motif. Cell fractionation experiments showed that SftA can be found in the cytosolic fraction, and to a minor degree in the membrane fraction, showing that it is a soluble protein in vivo. The expression of truncated SftA constructs led to a dominant sftA deletion phenotype, even at very low induction rates of the truncated proteins, indicating that the incorporation of nonfunctional monomers into SftA hexamers abolishes functionality. Mobility shift experiments and surface plasmon binding studies showed that SftA binds to DNA in a cooperative manner, and demonstrated low ATPase activity when binding to short nucleotides rather than to long stretches of DNA.
期刊介绍:
We are entering a new and exciting era of microbiological study and application. Recent advances in the now established disciplines of genomics, proteomics and bioinformatics, together with extensive cooperation between academic and industrial concerns have brought about an integration of basic and applied microbiology as never before.