一维无序系统中特征态的局部化

M. Goda
{"title":"一维无序系统中特征态的局部化","authors":"M. Goda","doi":"10.1143/PTPS.72.232","DOIUrl":null,"url":null,"abstract":"Exact results are obtained on the localization of eigenstates in one­ dimensional infinite disordered systems with diagonal and off-diagonal random­ nesses. A Furstenberg-type theorem is established for the product of matrices associated with a multi-Markov-chain. As a result, Matsuda and Ishii's theory is generalized to examine the systems with both randomnesses. Harmonic chains, tightly binding electronic systems and Heisenberg-Mattis model are considered as typical examples.","PeriodicalId":20614,"journal":{"name":"Progress of Theoretical Physics Supplement","volume":"72 1","pages":"232-246"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1143/PTPS.72.232","citationCount":"0","resultStr":"{\"title\":\"Localization of Eigenstates in One-Dimensional Disordered Systems\",\"authors\":\"M. Goda\",\"doi\":\"10.1143/PTPS.72.232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exact results are obtained on the localization of eigenstates in one­ dimensional infinite disordered systems with diagonal and off-diagonal random­ nesses. A Furstenberg-type theorem is established for the product of matrices associated with a multi-Markov-chain. As a result, Matsuda and Ishii's theory is generalized to examine the systems with both randomnesses. Harmonic chains, tightly binding electronic systems and Heisenberg-Mattis model are considered as typical examples.\",\"PeriodicalId\":20614,\"journal\":{\"name\":\"Progress of Theoretical Physics Supplement\",\"volume\":\"72 1\",\"pages\":\"232-246\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1143/PTPS.72.232\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress of Theoretical Physics Supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1143/PTPS.72.232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical Physics Supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1143/PTPS.72.232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对具有对角和非对角随机的一维无限无序系统的本征态的局部化得到了精确的结果。建立了与多马尔可夫链相关的矩阵乘积的一个furstenberg型定理。因此,Matsuda和Ishii的理论被推广到具有两种随机性的系统。谐波链、紧密结合电子系统和海森堡-马蒂斯模型是典型的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Localization of Eigenstates in One-Dimensional Disordered Systems
Exact results are obtained on the localization of eigenstates in one­ dimensional infinite disordered systems with diagonal and off-diagonal random­ nesses. A Furstenberg-type theorem is established for the product of matrices associated with a multi-Markov-chain. As a result, Matsuda and Ishii's theory is generalized to examine the systems with both randomnesses. Harmonic chains, tightly binding electronic systems and Heisenberg-Mattis model are considered as typical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信