{"title":"Jahangir图的色Schultz和Gutman多项式","authors":"Ramy S. Shaheen, Suhail Mahfud, Qays Alhawat","doi":"10.1155/2023/4891083","DOIUrl":null,"url":null,"abstract":"Topological polynomial and indices based on the distance between the vertices of a connected graph are widely used in the chemistry to establish relation between the structure and the properties of molecules. In a similar way, chromatic versions of certain topological indices and the related polynomial have also been discussed in the recent literature. In this paper, we present the chromatic Schultz and Gutman polynomials and the expanded form of the Hosoya polynomial and chromatic Schultz and Gutman polynomials, and then we derive these polynomials for special cases of Jahangir graphs.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Chromatic Schultz and Gutman Polynomials of Jahangir Graphs <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msub>\\n <mrow>\\n <mi>J</mi>\\n </mrow>\\n <mrow>\\n \",\"authors\":\"Ramy S. Shaheen, Suhail Mahfud, Qays Alhawat\",\"doi\":\"10.1155/2023/4891083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topological polynomial and indices based on the distance between the vertices of a connected graph are widely used in the chemistry to establish relation between the structure and the properties of molecules. In a similar way, chromatic versions of certain topological indices and the related polynomial have also been discussed in the recent literature. In this paper, we present the chromatic Schultz and Gutman polynomials and the expanded form of the Hosoya polynomial and chromatic Schultz and Gutman polynomials, and then we derive these polynomials for special cases of Jahangir graphs.\",\"PeriodicalId\":49251,\"journal\":{\"name\":\"Journal of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4891083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4891083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Chromatic Schultz and Gutman Polynomials of Jahangir Graphs
Topological polynomial and indices based on the distance between the vertices of a connected graph are widely used in the chemistry to establish relation between the structure and the properties of molecules. In a similar way, chromatic versions of certain topological indices and the related polynomial have also been discussed in the recent literature. In this paper, we present the chromatic Schultz and Gutman polynomials and the expanded form of the Hosoya polynomial and chromatic Schultz and Gutman polynomials, and then we derive these polynomials for special cases of Jahangir graphs.
期刊介绍:
Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.