{"title":"隐私保护推荐系统的规范方法:集成矩阵分解和遗传算法","authors":"Ming He, Sheng Hu","doi":"10.1155/2023/2959503","DOIUrl":null,"url":null,"abstract":"As recommendation systems heavily depend on user data, these systems are susceptible to potential privacy breaches. To mitigate this issue, differential privacy (DP) protection techniques have been developed to offer robust privacy safeguards. Nevertheless, a majority of the extant DP-based recommendation algorithms tend to introduce excessive noise, consequently impairing the quality of recommendations. In response, this study presents a novel DP-preserving recommendation algorithm that integrates matrix factorization (MF) and a genetic algorithm (GA). Initially, the MF problem is transformed into two interrelated optimization problems, namely, the user-hidden factor and the item-hidden factor. Subsequently, GA is employed to address these optimization issues. An enhancement index mechanism is incorporated into the individual selection of GA, while the variation process of GA is devised based on identifying crucial hidden factors. Utilizing the enhancement index mechanism aids in minimizing the algorithm’s perturbation level, thereby achieving an optimal balance between privacy protection and algorithm utility. Experimental analyses, encompassing recommendation accuracy, efficiency, and parameter variation effects, are conducted on Last.fm and Flixster datasets. The findings corroborate that the proposed system outperforms existing alternatives under stringent privacy constraints, thereby attesting to its efficacy.","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"3 1","pages":"1-14"},"PeriodicalIF":5.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Normative Approach to Privacy-Preserving Recommender Systems: Integrating Matrix Factorization and Genetic Algorithms\",\"authors\":\"Ming He, Sheng Hu\",\"doi\":\"10.1155/2023/2959503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As recommendation systems heavily depend on user data, these systems are susceptible to potential privacy breaches. To mitigate this issue, differential privacy (DP) protection techniques have been developed to offer robust privacy safeguards. Nevertheless, a majority of the extant DP-based recommendation algorithms tend to introduce excessive noise, consequently impairing the quality of recommendations. In response, this study presents a novel DP-preserving recommendation algorithm that integrates matrix factorization (MF) and a genetic algorithm (GA). Initially, the MF problem is transformed into two interrelated optimization problems, namely, the user-hidden factor and the item-hidden factor. Subsequently, GA is employed to address these optimization issues. An enhancement index mechanism is incorporated into the individual selection of GA, while the variation process of GA is devised based on identifying crucial hidden factors. Utilizing the enhancement index mechanism aids in minimizing the algorithm’s perturbation level, thereby achieving an optimal balance between privacy protection and algorithm utility. Experimental analyses, encompassing recommendation accuracy, efficiency, and parameter variation effects, are conducted on Last.fm and Flixster datasets. The findings corroborate that the proposed system outperforms existing alternatives under stringent privacy constraints, thereby attesting to its efficacy.\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"3 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/2959503\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2023/2959503","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Normative Approach to Privacy-Preserving Recommender Systems: Integrating Matrix Factorization and Genetic Algorithms
As recommendation systems heavily depend on user data, these systems are susceptible to potential privacy breaches. To mitigate this issue, differential privacy (DP) protection techniques have been developed to offer robust privacy safeguards. Nevertheless, a majority of the extant DP-based recommendation algorithms tend to introduce excessive noise, consequently impairing the quality of recommendations. In response, this study presents a novel DP-preserving recommendation algorithm that integrates matrix factorization (MF) and a genetic algorithm (GA). Initially, the MF problem is transformed into two interrelated optimization problems, namely, the user-hidden factor and the item-hidden factor. Subsequently, GA is employed to address these optimization issues. An enhancement index mechanism is incorporated into the individual selection of GA, while the variation process of GA is devised based on identifying crucial hidden factors. Utilizing the enhancement index mechanism aids in minimizing the algorithm’s perturbation level, thereby achieving an optimal balance between privacy protection and algorithm utility. Experimental analyses, encompassing recommendation accuracy, efficiency, and parameter variation effects, are conducted on Last.fm and Flixster datasets. The findings corroborate that the proposed system outperforms existing alternatives under stringent privacy constraints, thereby attesting to its efficacy.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.