{"title":"新型冠状病毒多株传播的数学建模及最优控制策略","authors":"B. Khajji, L. Boujallal, O. Balatif, M. Rachik","doi":"10.1155/2022/9071890","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a continuous mathematical model that describes the spread of multistrains COVID-19 virus among humans: susceptible, exposed, infected, quarantined, hospitalized, and recovered individuals. The positivity and boundedness of the system solution are provided in order to get the well posedness of the proposed model. Secondly, three controls are considered in our model to minimize the multistrain spread of the disease, namely, vaccination, security campaigns, social distancing measures, and diagnosis. Furthermore, the optimal control problem and related optimality conditions of the Pontryagin type are discussed with the objective to minimize the number of infected individuals. Finally, numerical simulations are performed in the case of two strains of COVID-19 and with four control strategies. By using the incremental cost-effectiveness ratio (ICER) method, we show that combining vaccination with diagnosis provides the most cost-effective strategy.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mathematical Modelling and Optimal Control Strategies of a Multistrain COVID-19 Spread\",\"authors\":\"B. Khajji, L. Boujallal, O. Balatif, M. Rachik\",\"doi\":\"10.1155/2022/9071890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a continuous mathematical model that describes the spread of multistrains COVID-19 virus among humans: susceptible, exposed, infected, quarantined, hospitalized, and recovered individuals. The positivity and boundedness of the system solution are provided in order to get the well posedness of the proposed model. Secondly, three controls are considered in our model to minimize the multistrain spread of the disease, namely, vaccination, security campaigns, social distancing measures, and diagnosis. Furthermore, the optimal control problem and related optimality conditions of the Pontryagin type are discussed with the objective to minimize the number of infected individuals. Finally, numerical simulations are performed in the case of two strains of COVID-19 and with four control strategies. By using the incremental cost-effectiveness ratio (ICER) method, we show that combining vaccination with diagnosis provides the most cost-effective strategy.\",\"PeriodicalId\":49251,\"journal\":{\"name\":\"Journal of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/9071890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/9071890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Mathematical Modelling and Optimal Control Strategies of a Multistrain COVID-19 Spread
In this paper, we propose a continuous mathematical model that describes the spread of multistrains COVID-19 virus among humans: susceptible, exposed, infected, quarantined, hospitalized, and recovered individuals. The positivity and boundedness of the system solution are provided in order to get the well posedness of the proposed model. Secondly, three controls are considered in our model to minimize the multistrain spread of the disease, namely, vaccination, security campaigns, social distancing measures, and diagnosis. Furthermore, the optimal control problem and related optimality conditions of the Pontryagin type are discussed with the objective to minimize the number of infected individuals. Finally, numerical simulations are performed in the case of two strains of COVID-19 and with four control strategies. By using the incremental cost-effectiveness ratio (ICER) method, we show that combining vaccination with diagnosis provides the most cost-effective strategy.
期刊介绍:
Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.