新型冠状病毒多株传播的数学建模及最优控制策略

IF 1.2 Q2 MATHEMATICS, APPLIED
B. Khajji, L. Boujallal, O. Balatif, M. Rachik
{"title":"新型冠状病毒多株传播的数学建模及最优控制策略","authors":"B. Khajji, L. Boujallal, O. Balatif, M. Rachik","doi":"10.1155/2022/9071890","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a continuous mathematical model that describes the spread of multistrains COVID-19 virus among humans: susceptible, exposed, infected, quarantined, hospitalized, and recovered individuals. The positivity and boundedness of the system solution are provided in order to get the well posedness of the proposed model. Secondly, three controls are considered in our model to minimize the multistrain spread of the disease, namely, vaccination, security campaigns, social distancing measures, and diagnosis. Furthermore, the optimal control problem and related optimality conditions of the Pontryagin type are discussed with the objective to minimize the number of infected individuals. Finally, numerical simulations are performed in the case of two strains of COVID-19 and with four control strategies. By using the incremental cost-effectiveness ratio (ICER) method, we show that combining vaccination with diagnosis provides the most cost-effective strategy.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mathematical Modelling and Optimal Control Strategies of a Multistrain COVID-19 Spread\",\"authors\":\"B. Khajji, L. Boujallal, O. Balatif, M. Rachik\",\"doi\":\"10.1155/2022/9071890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a continuous mathematical model that describes the spread of multistrains COVID-19 virus among humans: susceptible, exposed, infected, quarantined, hospitalized, and recovered individuals. The positivity and boundedness of the system solution are provided in order to get the well posedness of the proposed model. Secondly, three controls are considered in our model to minimize the multistrain spread of the disease, namely, vaccination, security campaigns, social distancing measures, and diagnosis. Furthermore, the optimal control problem and related optimality conditions of the Pontryagin type are discussed with the objective to minimize the number of infected individuals. Finally, numerical simulations are performed in the case of two strains of COVID-19 and with four control strategies. By using the incremental cost-effectiveness ratio (ICER) method, we show that combining vaccination with diagnosis provides the most cost-effective strategy.\",\"PeriodicalId\":49251,\"journal\":{\"name\":\"Journal of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/9071890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/9071890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一个连续的数学模型来描述多株COVID-19病毒在人类中的传播:易感、暴露、感染、隔离、住院和康复个体。为了得到模型的适定性,给出了系统解的正性和有界性。其次,在我们的模型中考虑了三种控制措施,即疫苗接种、安全运动、社会距离措施和诊断,以最大限度地减少疾病的多株传播。在此基础上,讨论了以感染个体数量最小为目标的庞特里亚金型最优控制问题及其最优性条件。最后,对两种新型冠状病毒株和四种控制策略进行了数值模拟。通过使用增量成本-效果比(ICER)方法,我们表明将疫苗接种与诊断相结合提供了最具成本效益的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Modelling and Optimal Control Strategies of a Multistrain COVID-19 Spread
In this paper, we propose a continuous mathematical model that describes the spread of multistrains COVID-19 virus among humans: susceptible, exposed, infected, quarantined, hospitalized, and recovered individuals. The positivity and boundedness of the system solution are provided in order to get the well posedness of the proposed model. Secondly, three controls are considered in our model to minimize the multistrain spread of the disease, namely, vaccination, security campaigns, social distancing measures, and diagnosis. Furthermore, the optimal control problem and related optimality conditions of the Pontryagin type are discussed with the objective to minimize the number of infected individuals. Finally, numerical simulations are performed in the case of two strains of COVID-19 and with four control strategies. By using the incremental cost-effectiveness ratio (ICER) method, we show that combining vaccination with diagnosis provides the most cost-effective strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信