{"title":"不同程度点蚀故障齿轮啮合刚度及振动响应研究","authors":"Jie Liu, Chengye Wang, Wenchao Wu","doi":"10.1155/2020/4176430","DOIUrl":null,"url":null,"abstract":"In order to study the influence of pitting on meshing stiffness, the normal distribution function is used to simulate the pitting location of pitting gear, and the potential energy method is used to analyze the influence of pitting on meshing stiffness. At the same time, the meshing stiffness of pitting gears with different degrees is analyzed by finite element method, and the validity of the calculation results with potential energy method is verified. On the basis of meshing stiffness, the dynamic model of gear system is established, and the vibration response of pitting gear system with different degrees is analyzed. The results show that with the increase of pitting area, the meshing stiffness decreases; the closer the meshing area of the driving wheel is to the pitting line, the more the meshing stiffness decreases, resulting in the intensification of vibration response and periodic impact; and in the time history diagram, there is a small spurious frequencies near the meshing frequency; in the phase diagrams and the Poincare diagram, trajectory and discrete point aggregation area is gradually increased.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"20 1","pages":"1-7"},"PeriodicalIF":0.9000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/4176430","citationCount":"9","resultStr":"{\"title\":\"Research on Meshing Stiffness and Vibration Response of Pitting Fault Gears with Different Degrees\",\"authors\":\"Jie Liu, Chengye Wang, Wenchao Wu\",\"doi\":\"10.1155/2020/4176430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to study the influence of pitting on meshing stiffness, the normal distribution function is used to simulate the pitting location of pitting gear, and the potential energy method is used to analyze the influence of pitting on meshing stiffness. At the same time, the meshing stiffness of pitting gears with different degrees is analyzed by finite element method, and the validity of the calculation results with potential energy method is verified. On the basis of meshing stiffness, the dynamic model of gear system is established, and the vibration response of pitting gear system with different degrees is analyzed. The results show that with the increase of pitting area, the meshing stiffness decreases; the closer the meshing area of the driving wheel is to the pitting line, the more the meshing stiffness decreases, resulting in the intensification of vibration response and periodic impact; and in the time history diagram, there is a small spurious frequencies near the meshing frequency; in the phase diagrams and the Poincare diagram, trajectory and discrete point aggregation area is gradually increased.\",\"PeriodicalId\":46335,\"journal\":{\"name\":\"International Journal of Rotating Machinery\",\"volume\":\"20 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2020/4176430\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Rotating Machinery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/4176430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rotating Machinery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/4176430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Research on Meshing Stiffness and Vibration Response of Pitting Fault Gears with Different Degrees
In order to study the influence of pitting on meshing stiffness, the normal distribution function is used to simulate the pitting location of pitting gear, and the potential energy method is used to analyze the influence of pitting on meshing stiffness. At the same time, the meshing stiffness of pitting gears with different degrees is analyzed by finite element method, and the validity of the calculation results with potential energy method is verified. On the basis of meshing stiffness, the dynamic model of gear system is established, and the vibration response of pitting gear system with different degrees is analyzed. The results show that with the increase of pitting area, the meshing stiffness decreases; the closer the meshing area of the driving wheel is to the pitting line, the more the meshing stiffness decreases, resulting in the intensification of vibration response and periodic impact; and in the time history diagram, there is a small spurious frequencies near the meshing frequency; in the phase diagrams and the Poincare diagram, trajectory and discrete point aggregation area is gradually increased.
期刊介绍:
This comprehensive journal provides the latest information on rotating machines and machine elements. This technology has become essential to many industrial processes, including gas-, steam-, water-, or wind-driven turbines at power generation systems, and in food processing, automobile and airplane engines, heating, refrigeration, air conditioning, and chemical or petroleum refining. In spite of the importance of rotating machinery and the huge financial resources involved in the industry, only a few publications distribute research and development information on the prime movers. This journal is the first source to combine the technology, as it applies to all of these specialties, previously scattered throughout literature.