玻璃和熔体中的低能激发

H. Schober, C. Gaukel, C. Oligschleger
{"title":"玻璃和熔体中的低能激发","authors":"H. Schober, C. Gaukel, C. Oligschleger","doi":"10.1143/PTPS.126.67","DOIUrl":null,"url":null,"abstract":"Glasses and amorphous materials show, coexisting with the sound waves, a variety of low energy excitations: tunneling, quasi-localized vibrations and relaxations. The latter two are observed well into the liquid state. Using molecular dynamics both were shown to be centered, at low temperatures, typically on more than ten atoms or molecular units, which form chainlike structures. With increasing frequency the interaction of the quasi-localized modes with the sound waves and with each other increases, they de-localize. However, even at the so-called boson peak frequency, where the sound waves become over-damped due to the interaction, the vibrations can be decomposed into local and extended modes. Closely correlated with t.he local vibrations are the local relaxations, which can be envisaged as collective jumps of groups of atoms. With rising temperature both the total jump length and the number of atoms participating increases. In the melt when single jumps are no longer resolved one still observes a collective motion of chains of atoms.","PeriodicalId":20614,"journal":{"name":"Progress of Theoretical Physics Supplement","volume":"126 1","pages":"67-74"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Low Energy Excitations in Glasses and Melts\",\"authors\":\"H. Schober, C. Gaukel, C. Oligschleger\",\"doi\":\"10.1143/PTPS.126.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glasses and amorphous materials show, coexisting with the sound waves, a variety of low energy excitations: tunneling, quasi-localized vibrations and relaxations. The latter two are observed well into the liquid state. Using molecular dynamics both were shown to be centered, at low temperatures, typically on more than ten atoms or molecular units, which form chainlike structures. With increasing frequency the interaction of the quasi-localized modes with the sound waves and with each other increases, they de-localize. However, even at the so-called boson peak frequency, where the sound waves become over-damped due to the interaction, the vibrations can be decomposed into local and extended modes. Closely correlated with t.he local vibrations are the local relaxations, which can be envisaged as collective jumps of groups of atoms. With rising temperature both the total jump length and the number of atoms participating increases. In the melt when single jumps are no longer resolved one still observes a collective motion of chains of atoms.\",\"PeriodicalId\":20614,\"journal\":{\"name\":\"Progress of Theoretical Physics Supplement\",\"volume\":\"126 1\",\"pages\":\"67-74\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress of Theoretical Physics Supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1143/PTPS.126.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical Physics Supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1143/PTPS.126.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

与声波共存的玻璃和非晶材料表现出多种低能量激发:隧穿、准局域振动和弛豫。后两者可以很好地观察到液体状态。通过分子动力学,研究人员发现,在低温下,这两种物质通常集中在10多个原子或分子单元上,形成链状结构。随着频率的增加,准局域模与声波的相互作用以及彼此之间的相互作用增加,它们的局域性减弱。然而,即使在所谓的玻色子峰值频率下,声波由于相互作用而变得过度阻尼,振动也可以分解为局部和扩展模式。与局部振动密切相关的是局部弛豫,它可以被设想为原子群的集体跳跃。随着温度的升高,总跃迁长度和参与的原子数都增加。在熔体中,当单跳不再发生时,人们仍然观察到原子链的集体运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low Energy Excitations in Glasses and Melts
Glasses and amorphous materials show, coexisting with the sound waves, a variety of low energy excitations: tunneling, quasi-localized vibrations and relaxations. The latter two are observed well into the liquid state. Using molecular dynamics both were shown to be centered, at low temperatures, typically on more than ten atoms or molecular units, which form chainlike structures. With increasing frequency the interaction of the quasi-localized modes with the sound waves and with each other increases, they de-localize. However, even at the so-called boson peak frequency, where the sound waves become over-damped due to the interaction, the vibrations can be decomposed into local and extended modes. Closely correlated with t.he local vibrations are the local relaxations, which can be envisaged as collective jumps of groups of atoms. With rising temperature both the total jump length and the number of atoms participating increases. In the melt when single jumps are no longer resolved one still observes a collective motion of chains of atoms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信