关于认知诊断模型中考生分类方法比较的说明

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Alan Huebner, Chun Wang
{"title":"关于认知诊断模型中考生分类方法比较的说明","authors":"Alan Huebner, Chun Wang","doi":"10.1177/0013164410388832","DOIUrl":null,"url":null,"abstract":"Cognitive diagnosis models have received much attention in the recent psychometric literature because of their potential to provide examinees with information regarding multiple fine-grained discretely defined skills, or attributes. This article discusses the issue of methods of examinee classification for cognitive diagnosis models, which are special cases of restricted latent class models. Specifically, the maximum likelihood estimation and maximum a posteriori classification methods are compared with the expected a posteriori method. A simulation study using the Deterministic Input, Noisy-And model is used to assess the classification accuracy of the methods using various criteria.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2011-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0013164410388832","citationCount":"57","resultStr":"{\"title\":\"A Note on Comparing Examinee Classification Methods for Cognitive Diagnosis Models\",\"authors\":\"Alan Huebner, Chun Wang\",\"doi\":\"10.1177/0013164410388832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cognitive diagnosis models have received much attention in the recent psychometric literature because of their potential to provide examinees with information regarding multiple fine-grained discretely defined skills, or attributes. This article discusses the issue of methods of examinee classification for cognitive diagnosis models, which are special cases of restricted latent class models. Specifically, the maximum likelihood estimation and maximum a posteriori classification methods are compared with the expected a posteriori method. A simulation study using the Deterministic Input, Noisy-And model is used to assess the classification accuracy of the methods using various criteria.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2011-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0013164410388832\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/0013164410388832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/0013164410388832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 57

摘要

认知诊断模型在最近的心理测量学文献中受到了很大的关注,因为它们有可能为考生提供有关多个细粒度离散定义的技能或属性的信息。本文讨论了认知诊断模型的考生分类方法问题,该模型是限制潜类模型的特例。具体来说,将极大似然估计和极大后验分类方法与期望后验方法进行了比较。采用确定性输入、噪声和模型进行仿真研究,利用各种标准评估方法的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Comparing Examinee Classification Methods for Cognitive Diagnosis Models
Cognitive diagnosis models have received much attention in the recent psychometric literature because of their potential to provide examinees with information regarding multiple fine-grained discretely defined skills, or attributes. This article discusses the issue of methods of examinee classification for cognitive diagnosis models, which are special cases of restricted latent class models. Specifically, the maximum likelihood estimation and maximum a posteriori classification methods are compared with the expected a posteriori method. A simulation study using the Deterministic Input, Noisy-And model is used to assess the classification accuracy of the methods using various criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信