{"title":"磁场中的非氢里德伯原子","authors":"P. Dando, T. S. Monteiro, W. Jans, W. Schweizer","doi":"10.1143/PTPS.116.403","DOIUrl":null,"url":null,"abstract":"The classical and quanta! dynamics of non-hydrogenic Rydberg atoms in magnetic fields are investigated. Previous attempts to infer classical behaviour from quantum properties produced conflicting results: at low scaled energies (c:= -0.5) the nearest-neighbour statistics (NNS) were found to be at the chaotic (Wigner) limit while quantum phase-space distribu tions suggested a high degree of regularity. Here the classical limit is investigated directly by solving the equations of motion of the Diamagnetic Kepler problem (DKP) with an additional non-Coulombic model potential. It is found that typically trajectories are, over a long time-scale, ergodic. However over a shorter time-scale-in between collisions with the core-classical trajectories remain confined on the tori of the DKP. The origin of a well-known resonance in the NNS of hydrogen at c:= -0.316 is clarified by the comparison with the non-hydrogenic behaviour. However, the classical model only partially explains the quantum behaviour. The difficulties of quantizing such a system are discussed.","PeriodicalId":20614,"journal":{"name":"Progress of Theoretical Physics Supplement","volume":"116 1","pages":"403-416"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Non-Hydrogenic Rydberg Atoms in Magnetic Fields\",\"authors\":\"P. Dando, T. S. Monteiro, W. Jans, W. Schweizer\",\"doi\":\"10.1143/PTPS.116.403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classical and quanta! dynamics of non-hydrogenic Rydberg atoms in magnetic fields are investigated. Previous attempts to infer classical behaviour from quantum properties produced conflicting results: at low scaled energies (c:= -0.5) the nearest-neighbour statistics (NNS) were found to be at the chaotic (Wigner) limit while quantum phase-space distribu tions suggested a high degree of regularity. Here the classical limit is investigated directly by solving the equations of motion of the Diamagnetic Kepler problem (DKP) with an additional non-Coulombic model potential. It is found that typically trajectories are, over a long time-scale, ergodic. However over a shorter time-scale-in between collisions with the core-classical trajectories remain confined on the tori of the DKP. The origin of a well-known resonance in the NNS of hydrogen at c:= -0.316 is clarified by the comparison with the non-hydrogenic behaviour. However, the classical model only partially explains the quantum behaviour. The difficulties of quantizing such a system are discussed.\",\"PeriodicalId\":20614,\"journal\":{\"name\":\"Progress of Theoretical Physics Supplement\",\"volume\":\"116 1\",\"pages\":\"403-416\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress of Theoretical Physics Supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1143/PTPS.116.403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical Physics Supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1143/PTPS.116.403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The classical and quanta! dynamics of non-hydrogenic Rydberg atoms in magnetic fields are investigated. Previous attempts to infer classical behaviour from quantum properties produced conflicting results: at low scaled energies (c:= -0.5) the nearest-neighbour statistics (NNS) were found to be at the chaotic (Wigner) limit while quantum phase-space distribu tions suggested a high degree of regularity. Here the classical limit is investigated directly by solving the equations of motion of the Diamagnetic Kepler problem (DKP) with an additional non-Coulombic model potential. It is found that typically trajectories are, over a long time-scale, ergodic. However over a shorter time-scale-in between collisions with the core-classical trajectories remain confined on the tori of the DKP. The origin of a well-known resonance in the NNS of hydrogen at c:= -0.316 is clarified by the comparison with the non-hydrogenic behaviour. However, the classical model only partially explains the quantum behaviour. The difficulties of quantizing such a system are discussed.