基于区域关联度的自适应组合预测模型及其在中国能源消费中的应用

IF 1.2 Q2 MATHEMATICS, APPLIED
Zhou Cheng, Chen Xi-yang
{"title":"基于区域关联度的自适应组合预测模型及其在中国能源消费中的应用","authors":"Zhou Cheng, Chen Xi-yang","doi":"10.1155/2014/845807","DOIUrl":null,"url":null,"abstract":"To accurately forecast energy consumption plays a vital part in rational energy planning formulation for a country. This study applies individual models (BP, GM (1, 1), triple exponential smoothing model, and polynomial trend extrapolation model) and combination forecasting models to predict China’s energy consumption. Since area correlation degree (ACD) can comprehensively evaluate both the correlation and fitting error of forecasting model, it is more effective to evaluate the performance of forecasting model. Firstly, the forecasting model’s performances rank in line with ACD. Then ACD is firstly proposed to choose individual models for combination and determine combination weight in this paper. Forecast results show that combination models usually have more accurate forecasting performance than individual models. The new method based on ACD shows its superiority in determining combination weights, compared with some other combination weight assignment methods such as: entropy weight method, reciprocal of mean absolute percentage error weight method, and optimal method of absolute percentage error minimization. By using combination forecasting model based on ACD, China’s energy consumption will be up to 5.7988 billion tons of standard coal in 2018.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/845807","citationCount":"2","resultStr":"{\"title\":\"Adaptive Combination Forecasting Model Based on Area Correlation Degree with Application to China’s Energy Consumption\",\"authors\":\"Zhou Cheng, Chen Xi-yang\",\"doi\":\"10.1155/2014/845807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To accurately forecast energy consumption plays a vital part in rational energy planning formulation for a country. This study applies individual models (BP, GM (1, 1), triple exponential smoothing model, and polynomial trend extrapolation model) and combination forecasting models to predict China’s energy consumption. Since area correlation degree (ACD) can comprehensively evaluate both the correlation and fitting error of forecasting model, it is more effective to evaluate the performance of forecasting model. Firstly, the forecasting model’s performances rank in line with ACD. Then ACD is firstly proposed to choose individual models for combination and determine combination weight in this paper. Forecast results show that combination models usually have more accurate forecasting performance than individual models. The new method based on ACD shows its superiority in determining combination weights, compared with some other combination weight assignment methods such as: entropy weight method, reciprocal of mean absolute percentage error weight method, and optimal method of absolute percentage error minimization. By using combination forecasting model based on ACD, China’s energy consumption will be up to 5.7988 billion tons of standard coal in 2018.\",\"PeriodicalId\":49251,\"journal\":{\"name\":\"Journal of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2014-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2014/845807\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/845807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/845807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

准确预测能源消费对一个国家合理制定能源规划至关重要。本文采用BP模型、GM(1,1)模型、三指数平滑模型、多项式趋势外推模型和组合预测模型对中国能源消费进行预测。由于面积关联度(area correlation degree, ACD)可以综合评价预测模型的相关性和拟合误差,因此对预测模型的性能评价更为有效。首先,预测模型的性能与ACD一致。在此基础上,本文首先提出了ACD选择组合的单个模型并确定组合权值的方法。预测结果表明,组合模型通常比单个模型具有更准确的预测效果。与熵权法、平均绝对百分比误差权的倒数法、绝对百分比误差最小最优法等组合权分配方法相比,基于ACD的新方法在确定组合权方面具有优势。基于ACD的组合预测模型预测,2018年中国能源消费量将达到57.988亿吨标准煤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Combination Forecasting Model Based on Area Correlation Degree with Application to China’s Energy Consumption
To accurately forecast energy consumption plays a vital part in rational energy planning formulation for a country. This study applies individual models (BP, GM (1, 1), triple exponential smoothing model, and polynomial trend extrapolation model) and combination forecasting models to predict China’s energy consumption. Since area correlation degree (ACD) can comprehensively evaluate both the correlation and fitting error of forecasting model, it is more effective to evaluate the performance of forecasting model. Firstly, the forecasting model’s performances rank in line with ACD. Then ACD is firstly proposed to choose individual models for combination and determine combination weight in this paper. Forecast results show that combination models usually have more accurate forecasting performance than individual models. The new method based on ACD shows its superiority in determining combination weights, compared with some other combination weight assignment methods such as: entropy weight method, reciprocal of mean absolute percentage error weight method, and optimal method of absolute percentage error minimization. By using combination forecasting model based on ACD, China’s energy consumption will be up to 5.7988 billion tons of standard coal in 2018.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信