二维重力和等单调变形的矩阵模型

G. Moore
{"title":"二维重力和等单调变形的矩阵模型","authors":"G. Moore","doi":"10.1143/PTPS.102.255","DOIUrl":null,"url":null,"abstract":"One of the principal goals of the theory of 2D gravity is making sense of the formal expression \r\n\r\n$$Z\\left( {\\mu ,\\kappa ;{t_i}} \\right) = \\sum\\limits_h {{{\\int_{ME{T_h}} {dge} }^{\\mu \\int {\\sqrt g + k\\int {\\sqrt g } + k} }}} {Z_{QFT\\left( {{t_i}} \\right)}}\\left[ g \\right]$$\r\n\r\n(1.1)\r\n\r\nwhere we integrate over metrics g on surfaces with h handles with a weight defined by the Einstein-Hilbert action (μ is the cosmological constant and κ is Newton’s constant, or, equivalently, the string coupling) together with the partition function of some 2D quantum field theory, QFT(t i ). The parameters t i are coordinates on a subspace of the space of 2D field theories, or, equivalently, coordinates for a space of string backgrounds.","PeriodicalId":20614,"journal":{"name":"Progress of Theoretical Physics Supplement","volume":"102 1","pages":"255-285"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1143/PTPS.102.255","citationCount":"109","resultStr":"{\"title\":\"Matrix Models of 2D Gravity and Isomonodromic Deformation\",\"authors\":\"G. Moore\",\"doi\":\"10.1143/PTPS.102.255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the principal goals of the theory of 2D gravity is making sense of the formal expression \\r\\n\\r\\n$$Z\\\\left( {\\\\mu ,\\\\kappa ;{t_i}} \\\\right) = \\\\sum\\\\limits_h {{{\\\\int_{ME{T_h}} {dge} }^{\\\\mu \\\\int {\\\\sqrt g + k\\\\int {\\\\sqrt g } + k} }}} {Z_{QFT\\\\left( {{t_i}} \\\\right)}}\\\\left[ g \\\\right]$$\\r\\n\\r\\n(1.1)\\r\\n\\r\\nwhere we integrate over metrics g on surfaces with h handles with a weight defined by the Einstein-Hilbert action (μ is the cosmological constant and κ is Newton’s constant, or, equivalently, the string coupling) together with the partition function of some 2D quantum field theory, QFT(t i ). The parameters t i are coordinates on a subspace of the space of 2D field theories, or, equivalently, coordinates for a space of string backgrounds.\",\"PeriodicalId\":20614,\"journal\":{\"name\":\"Progress of Theoretical Physics Supplement\",\"volume\":\"102 1\",\"pages\":\"255-285\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1143/PTPS.102.255\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress of Theoretical Physics Supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1143/PTPS.102.255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical Physics Supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1143/PTPS.102.255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109

摘要

二维引力理论的主要目标之一是使形式表达式$$Z\left( {\mu ,\kappa ;{t_i}} \right) = \sum\limits_h {{{\int_{ME{T_h}} {dge} }^{\mu \int {\sqrt g + k\int {\sqrt g } + k} }}} {Z_{QFT\left( {{t_i}} \right)}}\left[ g \right]$$(1.1)有意义,其中我们在带有h柄的曲面上对度量g进行积分,积分权由爱因斯坦-希尔伯特作用(μ是宇宙学常数,κ是牛顿常数,或者等价地,弦耦合)和某些二维量子场理论的配分函数QFT(t i)定义。参数t i是二维场论空间的一个子空间上的坐标,或者,等价地,是弦背景空间的坐标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix Models of 2D Gravity and Isomonodromic Deformation
One of the principal goals of the theory of 2D gravity is making sense of the formal expression $$Z\left( {\mu ,\kappa ;{t_i}} \right) = \sum\limits_h {{{\int_{ME{T_h}} {dge} }^{\mu \int {\sqrt g + k\int {\sqrt g } + k} }}} {Z_{QFT\left( {{t_i}} \right)}}\left[ g \right]$$ (1.1) where we integrate over metrics g on surfaces with h handles with a weight defined by the Einstein-Hilbert action (μ is the cosmological constant and κ is Newton’s constant, or, equivalently, the string coupling) together with the partition function of some 2D quantum field theory, QFT(t i ). The parameters t i are coordinates on a subspace of the space of 2D field theories, or, equivalently, coordinates for a space of string backgrounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信