磁在单波段模型精确的一维波函数推广到高维

D. Edwards
{"title":"磁在单波段模型精确的一维波函数推广到高维","authors":"D. Edwards","doi":"10.1143/PTPS.101.453","DOIUrl":null,"url":null,"abstract":"States of complete spin-alignment, except for one reversed spin, are investigated for a Fermi gas with 0'-function interactions and for the Hubbard model. A variational ansatz for the wave function of such states is given and is shown to be exact in one dimension. The wave function contains a set of one-electron orbitals which satisfy certain self-consistent field equations. The wave function forms the basis of a numerical scheme, described elsewhere, which should determine whether the state of complete spin alignment in the two-dimensional Hubbard model is ever stable against spin reversal in the thermodynamic limit.","PeriodicalId":20614,"journal":{"name":"Progress of Theoretical Physics Supplement","volume":"101 1","pages":"453-461"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Magnetism in Single-Band Models Exact One-Dimensional Wave Functions Generalised to Higher Dimensions\",\"authors\":\"D. Edwards\",\"doi\":\"10.1143/PTPS.101.453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"States of complete spin-alignment, except for one reversed spin, are investigated for a Fermi gas with 0'-function interactions and for the Hubbard model. A variational ansatz for the wave function of such states is given and is shown to be exact in one dimension. The wave function contains a set of one-electron orbitals which satisfy certain self-consistent field equations. The wave function forms the basis of a numerical scheme, described elsewhere, which should determine whether the state of complete spin alignment in the two-dimensional Hubbard model is ever stable against spin reversal in the thermodynamic limit.\",\"PeriodicalId\":20614,\"journal\":{\"name\":\"Progress of Theoretical Physics Supplement\",\"volume\":\"101 1\",\"pages\":\"453-461\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress of Theoretical Physics Supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1143/PTPS.101.453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical Physics Supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1143/PTPS.101.453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

对于具有0′函数相互作用的费米气体和Hubbard模型,研究了除一个反向自旋外的完全自旋对准状态。给出了这种状态的波函数的变分解析,并证明了它在一维上是精确的。波函数包含一组满足自洽场方程的单电子轨道。波函数构成了一个数值方案的基础,在其他地方描述,它应该决定在二维哈伯德模型中完全自旋对齐的状态在热力学极限下对自旋反转是否稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetism in Single-Band Models Exact One-Dimensional Wave Functions Generalised to Higher Dimensions
States of complete spin-alignment, except for one reversed spin, are investigated for a Fermi gas with 0'-function interactions and for the Hubbard model. A variational ansatz for the wave function of such states is given and is shown to be exact in one dimension. The wave function contains a set of one-electron orbitals which satisfy certain self-consistent field equations. The wave function forms the basis of a numerical scheme, described elsewhere, which should determine whether the state of complete spin alignment in the two-dimensional Hubbard model is ever stable against spin reversal in the thermodynamic limit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信