故障条件下垂直SiC功率mosfet的结构热模型描述

IF 1.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
A. Maerz, Teresa Bertelshofer, M. Bakran
{"title":"故障条件下垂直SiC功率mosfet的结构热模型描述","authors":"A. Maerz, Teresa Bertelshofer, M. Bakran","doi":"10.1155/2016/9414901","DOIUrl":null,"url":null,"abstract":"The accurate prediction of the SiC MOSFET withstanding time for single fault events greatly influences the requirements for device protection circuits for these devices in power converter applications, like voltage source inverters or power electronic transformers. For this reason, a thermal model, based on the structural design and the physical dimensions of the chip as well as material properties of 4H-SiC, is proposed. This article gives a general description of the thermal behaviour of vertical SiC MOSFET under various driving and boundary conditions in case of a short-circuit event. The thermal model substitutes destructive tests of a device for an individual set of boundary conditions of an occurring fault event. The validity of the analytically parametrised thermal model is verified by experimental short-circuit tests of state-of-the-art vertical SiC MOSFETs for a set of various boundary conditions. The investigated thermal model can furthermore be used to standardise different gate-oxide degradation values from the literature for means of lifetime prediction of the gate oxide for an individual application under repetitive occurring fault or overload conditions. These manufacturer specific reported values measured with no standardised testing procedures can be translated into a maximum junction temperature, which is repeatedly reached. The thermal model therefore provides a unifying parameter for the gate-oxide lifetime calculation for an individual chip and application.","PeriodicalId":43355,"journal":{"name":"Active and Passive Electronic Components","volume":"2016 1","pages":"1-12"},"PeriodicalIF":1.3000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/9414901","citationCount":"4","resultStr":"{\"title\":\"A Structural Based Thermal Model Description for Vertical SiC Power MOSFETs under Fault Conditions\",\"authors\":\"A. Maerz, Teresa Bertelshofer, M. Bakran\",\"doi\":\"10.1155/2016/9414901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accurate prediction of the SiC MOSFET withstanding time for single fault events greatly influences the requirements for device protection circuits for these devices in power converter applications, like voltage source inverters or power electronic transformers. For this reason, a thermal model, based on the structural design and the physical dimensions of the chip as well as material properties of 4H-SiC, is proposed. This article gives a general description of the thermal behaviour of vertical SiC MOSFET under various driving and boundary conditions in case of a short-circuit event. The thermal model substitutes destructive tests of a device for an individual set of boundary conditions of an occurring fault event. The validity of the analytically parametrised thermal model is verified by experimental short-circuit tests of state-of-the-art vertical SiC MOSFETs for a set of various boundary conditions. The investigated thermal model can furthermore be used to standardise different gate-oxide degradation values from the literature for means of lifetime prediction of the gate oxide for an individual application under repetitive occurring fault or overload conditions. These manufacturer specific reported values measured with no standardised testing procedures can be translated into a maximum junction temperature, which is repeatedly reached. The thermal model therefore provides a unifying parameter for the gate-oxide lifetime calculation for an individual chip and application.\",\"PeriodicalId\":43355,\"journal\":{\"name\":\"Active and Passive Electronic Components\",\"volume\":\"2016 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2016/9414901\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Active and Passive Electronic Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/9414901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active and Passive Electronic Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/9414901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

摘要

SiC MOSFET对单次故障事件耐受时间的准确预测,极大地影响了电压源逆变器或电力电子变压器等功率变换器应用中对这些器件的器件保护电路的要求。因此,基于芯片的结构设计和物理尺寸以及4H-SiC的材料特性,提出了一种热模型。本文对垂直SiC MOSFET在各种驱动和边界条件下发生短路时的热行为进行了一般描述。热模型用一个装置的破坏性试验来代替一个正在发生的故障事件的一组单独的边界条件。通过在不同边界条件下对最先进的垂直SiC mosfet进行短路实验,验证了解析参数化热模型的有效性。所研究的热模型还可以用于标准化文献中不同的栅极氧化物降解值,以便在重复发生故障或过载条件下对单个应用的栅极氧化物进行寿命预测。这些制造商特定的报告值测量没有标准化的测试程序可以转化为最大结温,这是反复达到。因此,热模型为单个芯片和应用的栅极氧化寿命计算提供了统一的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Structural Based Thermal Model Description for Vertical SiC Power MOSFETs under Fault Conditions
The accurate prediction of the SiC MOSFET withstanding time for single fault events greatly influences the requirements for device protection circuits for these devices in power converter applications, like voltage source inverters or power electronic transformers. For this reason, a thermal model, based on the structural design and the physical dimensions of the chip as well as material properties of 4H-SiC, is proposed. This article gives a general description of the thermal behaviour of vertical SiC MOSFET under various driving and boundary conditions in case of a short-circuit event. The thermal model substitutes destructive tests of a device for an individual set of boundary conditions of an occurring fault event. The validity of the analytically parametrised thermal model is verified by experimental short-circuit tests of state-of-the-art vertical SiC MOSFETs for a set of various boundary conditions. The investigated thermal model can furthermore be used to standardise different gate-oxide degradation values from the literature for means of lifetime prediction of the gate oxide for an individual application under repetitive occurring fault or overload conditions. These manufacturer specific reported values measured with no standardised testing procedures can be translated into a maximum junction temperature, which is repeatedly reached. The thermal model therefore provides a unifying parameter for the gate-oxide lifetime calculation for an individual chip and application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Active and Passive Electronic Components
Active and Passive Electronic Components ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.30
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊介绍: Active and Passive Electronic Components is an international journal devoted to the science and technology of all types of electronic components. The journal publishes experimental and theoretical papers on topics such as transistors, hybrid circuits, integrated circuits, MicroElectroMechanical Systems (MEMS), sensors, high frequency devices and circuits, power devices and circuits, non-volatile memory technologies such as ferroelectric and phase transition memories, and nano electronics devices and circuits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信