{"title":"增益范围为80db的2 GHz线性db可变增益放大器的设计","authors":"Zhengyu Sun, Yuepeng Yan","doi":"10.1155/2014/434189","DOIUrl":null,"url":null,"abstract":"A broadband linear-in-dB variable-gain amplifier (VGA) circuit is implemented in 0.18 μm SiGe BiCMOS process. The VGA comprises two cascaded variable-gain core, in which a hybrid current-steering current gain cell is inserted in the Cherry-Hooper amplifier to maintain a broad bandwidth while covering a wide gain range. Postlayout simulation results confirm that the proposed circuit achieves a 2 GHz 3-dB bandwidth with wide linear-in-dB gain tuning range from −19 dB up to 61 dB. The amplifier offers a competitive gain bandwidth product of 2805 GHz at the maximum gain for a 110-GHz ft BiCMOS technology. The amplifier core consumes 31 mW from a 3.3 V supply and occupies active area of 280 μm by 140 μm.","PeriodicalId":43355,"journal":{"name":"Active and Passive Electronic Components","volume":"2014 1","pages":"1-7"},"PeriodicalIF":1.3000,"publicationDate":"2014-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/434189","citationCount":"0","resultStr":"{\"title\":\"Design of a 2 GHz Linear-in-dB Variable-Gain Amplifier with 80-dB Gain Range\",\"authors\":\"Zhengyu Sun, Yuepeng Yan\",\"doi\":\"10.1155/2014/434189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A broadband linear-in-dB variable-gain amplifier (VGA) circuit is implemented in 0.18 μm SiGe BiCMOS process. The VGA comprises two cascaded variable-gain core, in which a hybrid current-steering current gain cell is inserted in the Cherry-Hooper amplifier to maintain a broad bandwidth while covering a wide gain range. Postlayout simulation results confirm that the proposed circuit achieves a 2 GHz 3-dB bandwidth with wide linear-in-dB gain tuning range from −19 dB up to 61 dB. The amplifier offers a competitive gain bandwidth product of 2805 GHz at the maximum gain for a 110-GHz ft BiCMOS technology. The amplifier core consumes 31 mW from a 3.3 V supply and occupies active area of 280 μm by 140 μm.\",\"PeriodicalId\":43355,\"journal\":{\"name\":\"Active and Passive Electronic Components\",\"volume\":\"2014 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2014-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2014/434189\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Active and Passive Electronic Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/434189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active and Passive Electronic Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/434189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design of a 2 GHz Linear-in-dB Variable-Gain Amplifier with 80-dB Gain Range
A broadband linear-in-dB variable-gain amplifier (VGA) circuit is implemented in 0.18 μm SiGe BiCMOS process. The VGA comprises two cascaded variable-gain core, in which a hybrid current-steering current gain cell is inserted in the Cherry-Hooper amplifier to maintain a broad bandwidth while covering a wide gain range. Postlayout simulation results confirm that the proposed circuit achieves a 2 GHz 3-dB bandwidth with wide linear-in-dB gain tuning range from −19 dB up to 61 dB. The amplifier offers a competitive gain bandwidth product of 2805 GHz at the maximum gain for a 110-GHz ft BiCMOS technology. The amplifier core consumes 31 mW from a 3.3 V supply and occupies active area of 280 μm by 140 μm.
期刊介绍:
Active and Passive Electronic Components is an international journal devoted to the science and technology of all types of electronic components. The journal publishes experimental and theoretical papers on topics such as transistors, hybrid circuits, integrated circuits, MicroElectroMechanical Systems (MEMS), sensors, high frequency devices and circuits, power devices and circuits, non-volatile memory technologies such as ferroelectric and phase transition memories, and nano electronics devices and circuits.