{"title":"一种新型无变压器光伏系统电力电子逆变电路","authors":"Cao Hai-yan","doi":"10.1155/2014/329043","DOIUrl":null,"url":null,"abstract":"Capacitive leakage current is one of the most important issues for transformerless photovoltaic systems. In order to deal with the capacitive leakage current, a new power electronic inverter circuit is proposed in this paper. The inverter circuit consists of six switches and operates with constant common mode voltage. Theoretical analysis is conducted to clarify the circuit operation principle and the common mode characteristic. The performance evaluation test is carried out, and test results demonstrate that the capacitive leakage current can be significantly minimized with the proposed power electronic inverter circuit.","PeriodicalId":43355,"journal":{"name":"Active and Passive Electronic Components","volume":"53 1","pages":"1-5"},"PeriodicalIF":1.3000,"publicationDate":"2014-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/329043","citationCount":"1","resultStr":"{\"title\":\"A Novel Power Electronic Inverter Circuit for Transformerless Photovoltaic Systems\",\"authors\":\"Cao Hai-yan\",\"doi\":\"10.1155/2014/329043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capacitive leakage current is one of the most important issues for transformerless photovoltaic systems. In order to deal with the capacitive leakage current, a new power electronic inverter circuit is proposed in this paper. The inverter circuit consists of six switches and operates with constant common mode voltage. Theoretical analysis is conducted to clarify the circuit operation principle and the common mode characteristic. The performance evaluation test is carried out, and test results demonstrate that the capacitive leakage current can be significantly minimized with the proposed power electronic inverter circuit.\",\"PeriodicalId\":43355,\"journal\":{\"name\":\"Active and Passive Electronic Components\",\"volume\":\"53 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2014-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2014/329043\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Active and Passive Electronic Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/329043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active and Passive Electronic Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/329043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Novel Power Electronic Inverter Circuit for Transformerless Photovoltaic Systems
Capacitive leakage current is one of the most important issues for transformerless photovoltaic systems. In order to deal with the capacitive leakage current, a new power electronic inverter circuit is proposed in this paper. The inverter circuit consists of six switches and operates with constant common mode voltage. Theoretical analysis is conducted to clarify the circuit operation principle and the common mode characteristic. The performance evaluation test is carried out, and test results demonstrate that the capacitive leakage current can be significantly minimized with the proposed power electronic inverter circuit.
期刊介绍:
Active and Passive Electronic Components is an international journal devoted to the science and technology of all types of electronic components. The journal publishes experimental and theoretical papers on topics such as transistors, hybrid circuits, integrated circuits, MicroElectroMechanical Systems (MEMS), sensors, high frequency devices and circuits, power devices and circuits, non-volatile memory technologies such as ferroelectric and phase transition memories, and nano electronics devices and circuits.