{"title":"利用补偿方法实现高顺应性电流镜的带宽扩展","authors":"Maneesha Gupta, Urvashi Singh, Richa Srivastava","doi":"10.1155/2014/274795","DOIUrl":null,"url":null,"abstract":"Due to the huge demand of high-speed analog integrated circuits, it is essential to develop a wideband low input impedance current mirror that can be operated at low power supply. In this paper, a novel wideband low voltage high compliance current mirror using low voltage cascode current mirror (LVCCM) as a basic building block is proposed. The resistive compensation and inductive peaking methods have been used to extend the bandwidth of the conventional current mirror. By replacing conventional LVCCM in a high compliance current mirror with the compensated LVCCM, the bandwidth extension ratio of 3.4 has been achieved with no additional DC power dissipation and without affecting its other performances. The circuits are designed in TSMC 0.18 μm CMOS technology on Spectre simulator of Cadence.","PeriodicalId":43355,"journal":{"name":"Active and Passive Electronic Components","volume":"53 1","pages":"1-8"},"PeriodicalIF":1.3000,"publicationDate":"2014-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/274795","citationCount":"7","resultStr":"{\"title\":\"Bandwidth Extension of High Compliance Current Mirror by Using Compensation Methods\",\"authors\":\"Maneesha Gupta, Urvashi Singh, Richa Srivastava\",\"doi\":\"10.1155/2014/274795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the huge demand of high-speed analog integrated circuits, it is essential to develop a wideband low input impedance current mirror that can be operated at low power supply. In this paper, a novel wideband low voltage high compliance current mirror using low voltage cascode current mirror (LVCCM) as a basic building block is proposed. The resistive compensation and inductive peaking methods have been used to extend the bandwidth of the conventional current mirror. By replacing conventional LVCCM in a high compliance current mirror with the compensated LVCCM, the bandwidth extension ratio of 3.4 has been achieved with no additional DC power dissipation and without affecting its other performances. The circuits are designed in TSMC 0.18 μm CMOS technology on Spectre simulator of Cadence.\",\"PeriodicalId\":43355,\"journal\":{\"name\":\"Active and Passive Electronic Components\",\"volume\":\"53 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2014-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2014/274795\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Active and Passive Electronic Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/274795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active and Passive Electronic Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/274795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Bandwidth Extension of High Compliance Current Mirror by Using Compensation Methods
Due to the huge demand of high-speed analog integrated circuits, it is essential to develop a wideband low input impedance current mirror that can be operated at low power supply. In this paper, a novel wideband low voltage high compliance current mirror using low voltage cascode current mirror (LVCCM) as a basic building block is proposed. The resistive compensation and inductive peaking methods have been used to extend the bandwidth of the conventional current mirror. By replacing conventional LVCCM in a high compliance current mirror with the compensated LVCCM, the bandwidth extension ratio of 3.4 has been achieved with no additional DC power dissipation and without affecting its other performances. The circuits are designed in TSMC 0.18 μm CMOS technology on Spectre simulator of Cadence.
期刊介绍:
Active and Passive Electronic Components is an international journal devoted to the science and technology of all types of electronic components. The journal publishes experimental and theoretical papers on topics such as transistors, hybrid circuits, integrated circuits, MicroElectroMechanical Systems (MEMS), sensors, high frequency devices and circuits, power devices and circuits, non-volatile memory technologies such as ferroelectric and phase transition memories, and nano electronics devices and circuits.