El-Sayed H. Ibrahim, Joseph G. Cernigliaro, M. Bridges, R. Pooley, W. Haley
{"title":"临床磁共振成像检测肾结石的能力和局限性:一项回顾性研究","authors":"El-Sayed H. Ibrahim, Joseph G. Cernigliaro, M. Bridges, R. Pooley, W. Haley","doi":"10.1155/2016/4935656","DOIUrl":null,"url":null,"abstract":"The purpose of this work was to investigate the performance of currently available magnetic resonance imaging (MRI) for detecting kidney stones, compared to computed tomography (CT) results, and to determine the characteristics of successfully detected stones. Patients who had undergone both abdominal/pelvic CT and MRI exams within 30 days were studied. The images were reviewed by two expert radiologists blinded to the patients' respective radiological diagnoses. The study consisted of four steps: (1) reviewing the MRI images and determining whether any kidney stone(s) are identified; (2) reviewing the corresponding CT images and confirming whether kidney stones are identified; (3) reviewing the MRI images a second time, armed with the information from the corresponding CT, noting whether any kidney stones are positively identified that were previously missed; (4) for all stones MRI-confirmed on previous steps, the radiologist experts being asked to answer whether in retrospect, with knowledge of size and location on corresponding CT, these stones would be affirmed as confidently identified on MRI or not. In this best-case scenario involving knowledge of stones and their locations on concurrent CT, radiologist experts detected 19% of kidney stones on MRI, with stone size being a major factor for stone identification.","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2016 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/4935656","citationCount":"6","resultStr":"{\"title\":\"The Capabilities and Limitations of Clinical Magnetic Resonance Imaging for Detecting Kidney Stones: A Retrospective Study\",\"authors\":\"El-Sayed H. Ibrahim, Joseph G. Cernigliaro, M. Bridges, R. Pooley, W. Haley\",\"doi\":\"10.1155/2016/4935656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this work was to investigate the performance of currently available magnetic resonance imaging (MRI) for detecting kidney stones, compared to computed tomography (CT) results, and to determine the characteristics of successfully detected stones. Patients who had undergone both abdominal/pelvic CT and MRI exams within 30 days were studied. The images were reviewed by two expert radiologists blinded to the patients' respective radiological diagnoses. The study consisted of four steps: (1) reviewing the MRI images and determining whether any kidney stone(s) are identified; (2) reviewing the corresponding CT images and confirming whether kidney stones are identified; (3) reviewing the MRI images a second time, armed with the information from the corresponding CT, noting whether any kidney stones are positively identified that were previously missed; (4) for all stones MRI-confirmed on previous steps, the radiologist experts being asked to answer whether in retrospect, with knowledge of size and location on corresponding CT, these stones would be affirmed as confidently identified on MRI or not. In this best-case scenario involving knowledge of stones and their locations on concurrent CT, radiologist experts detected 19% of kidney stones on MRI, with stone size being a major factor for stone identification.\",\"PeriodicalId\":47063,\"journal\":{\"name\":\"International Journal of Biomedical Imaging\",\"volume\":\"2016 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2016/4935656\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/4935656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/4935656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
The Capabilities and Limitations of Clinical Magnetic Resonance Imaging for Detecting Kidney Stones: A Retrospective Study
The purpose of this work was to investigate the performance of currently available magnetic resonance imaging (MRI) for detecting kidney stones, compared to computed tomography (CT) results, and to determine the characteristics of successfully detected stones. Patients who had undergone both abdominal/pelvic CT and MRI exams within 30 days were studied. The images were reviewed by two expert radiologists blinded to the patients' respective radiological diagnoses. The study consisted of four steps: (1) reviewing the MRI images and determining whether any kidney stone(s) are identified; (2) reviewing the corresponding CT images and confirming whether kidney stones are identified; (3) reviewing the MRI images a second time, armed with the information from the corresponding CT, noting whether any kidney stones are positively identified that were previously missed; (4) for all stones MRI-confirmed on previous steps, the radiologist experts being asked to answer whether in retrospect, with knowledge of size and location on corresponding CT, these stones would be affirmed as confidently identified on MRI or not. In this best-case scenario involving knowledge of stones and their locations on concurrent CT, radiologist experts detected 19% of kidney stones on MRI, with stone size being a major factor for stone identification.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics