构造非线性偏微分方程精确运动解的符号计算和扩展双曲函数法

IF 1.2 Q2 MATHEMATICS, APPLIED
Huang Yong, Shang Yadong, Yu Wenjun
{"title":"构造非线性偏微分方程精确运动解的符号计算和扩展双曲函数法","authors":"Huang Yong, Shang Yadong, Yu Wenjun","doi":"10.1155/2012/716719","DOIUrl":null,"url":null,"abstract":"On the basis of the computer symbolic system Maple and the extended hyperbolic function method, we develop a more mathematically rigorous and systematic procedure for constructing exact solitary wave solutions and exact periodic traveling wave solutions in triangle form of various nonlinear partial differential equations that are with physical backgrounds. Compared with the existing methods, the proposed method gives new and more general solutions. More importantly, the method provides a straightforward and effective algorithm to obtain abundant explicit and exact particular solutions for large nonlinear mathematical physics equations. We apply the presented method to two variant Boussinesq equations and give a series of exact explicit traveling wave solutions that have some more general forms. So consequently, the efficiency and the generality of the proposed method are demonstrated.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2012-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/716719","citationCount":"2","resultStr":"{\"title\":\"Symbolic Computation and the Extended Hyperbolic Function Method for Constructing Exact Traveling Solutions of Nonlinear PDEs\",\"authors\":\"Huang Yong, Shang Yadong, Yu Wenjun\",\"doi\":\"10.1155/2012/716719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the basis of the computer symbolic system Maple and the extended hyperbolic function method, we develop a more mathematically rigorous and systematic procedure for constructing exact solitary wave solutions and exact periodic traveling wave solutions in triangle form of various nonlinear partial differential equations that are with physical backgrounds. Compared with the existing methods, the proposed method gives new and more general solutions. More importantly, the method provides a straightforward and effective algorithm to obtain abundant explicit and exact particular solutions for large nonlinear mathematical physics equations. We apply the presented method to two variant Boussinesq equations and give a series of exact explicit traveling wave solutions that have some more general forms. So consequently, the efficiency and the generality of the proposed method are demonstrated.\",\"PeriodicalId\":49251,\"journal\":{\"name\":\"Journal of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2012-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/716719\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/716719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/716719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

在计算机符号系统Maple和扩展双曲函数方法的基础上,我们开发了一种数学上更加严格和系统的方法来构造具有物理背景的各种非线性偏微分方程的三角形形式的精确孤立波解和精确周期行波解。与现有方法相比,该方法给出了新的、更通用的解。更重要的是,该方法为求解大型非线性数学物理方程的大量显式精确特解提供了一种简单有效的算法。我们将所提出的方法应用于两个不同的Boussinesq方程,并给出了一系列具有更一般形式的精确显式行波解。从而证明了该方法的有效性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symbolic Computation and the Extended Hyperbolic Function Method for Constructing Exact Traveling Solutions of Nonlinear PDEs
On the basis of the computer symbolic system Maple and the extended hyperbolic function method, we develop a more mathematically rigorous and systematic procedure for constructing exact solitary wave solutions and exact periodic traveling wave solutions in triangle form of various nonlinear partial differential equations that are with physical backgrounds. Compared with the existing methods, the proposed method gives new and more general solutions. More importantly, the method provides a straightforward and effective algorithm to obtain abundant explicit and exact particular solutions for large nonlinear mathematical physics equations. We apply the presented method to two variant Boussinesq equations and give a series of exact explicit traveling wave solutions that have some more general forms. So consequently, the efficiency and the generality of the proposed method are demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信