IEEE 802.15.4a中用于测距的相干和非相干接收机分析

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
T. Gigl, F. Troesch, J. Preishuber-Pflügl, K. Witrisal
{"title":"IEEE 802.15.4a中用于测距的相干和非相干接收机分析","authors":"T. Gigl, F. Troesch, J. Preishuber-Pflügl, K. Witrisal","doi":"10.1155/2012/218930","DOIUrl":null,"url":null,"abstract":"The IEEE 802.15.4a standard for wireless sensor networks is designed for high-accuracy ranging using ultra-wideband (UWB) signals. It supports coherent and noncoherent (energy detector) receivers, thus the performance-complexity-tradeoff can be decided by the implementer. In this paper, the maximum operating range and the maximum allowed pathloss are analyzed for ranging and both receiver types, under FCC/CEPT regulations. The analysis is based on the receiver working points and a link budget calculation assuming a frees-pace pathloss model. It takes into consideration the parameters of the preamble, which influence the transmit power allowed by the regulators. The best performance is achieved with the code sequences having the longest pulse spacing. Coherent receivers can achieve a maximum operating range up to several thousand meters and energy detectors up to several hundred meters.","PeriodicalId":46573,"journal":{"name":"Journal of Electrical and Computer Engineering","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/218930","citationCount":"9","resultStr":"{\"title\":\"An Analysis of Coherent and Non-Coherent Receivers for Ranging in IEEE 802.15.4a\",\"authors\":\"T. Gigl, F. Troesch, J. Preishuber-Pflügl, K. Witrisal\",\"doi\":\"10.1155/2012/218930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The IEEE 802.15.4a standard for wireless sensor networks is designed for high-accuracy ranging using ultra-wideband (UWB) signals. It supports coherent and noncoherent (energy detector) receivers, thus the performance-complexity-tradeoff can be decided by the implementer. In this paper, the maximum operating range and the maximum allowed pathloss are analyzed for ranging and both receiver types, under FCC/CEPT regulations. The analysis is based on the receiver working points and a link budget calculation assuming a frees-pace pathloss model. It takes into consideration the parameters of the preamble, which influence the transmit power allowed by the regulators. The best performance is achieved with the code sequences having the longest pulse spacing. Coherent receivers can achieve a maximum operating range up to several thousand meters and energy detectors up to several hundred meters.\",\"PeriodicalId\":46573,\"journal\":{\"name\":\"Journal of Electrical and Computer Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/218930\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/218930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/218930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 9

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Analysis of Coherent and Non-Coherent Receivers for Ranging in IEEE 802.15.4a
The IEEE 802.15.4a standard for wireless sensor networks is designed for high-accuracy ranging using ultra-wideband (UWB) signals. It supports coherent and noncoherent (energy detector) receivers, thus the performance-complexity-tradeoff can be decided by the implementer. In this paper, the maximum operating range and the maximum allowed pathloss are analyzed for ranging and both receiver types, under FCC/CEPT regulations. The analysis is based on the receiver working points and a link budget calculation assuming a frees-pace pathloss model. It takes into consideration the parameters of the preamble, which influence the transmit power allowed by the regulators. The best performance is achieved with the code sequences having the longest pulse spacing. Coherent receivers can achieve a maximum operating range up to several thousand meters and energy detectors up to several hundred meters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrical and Computer Engineering
Journal of Electrical and Computer Engineering COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
4.20
自引率
0.00%
发文量
152
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信