具有二次和混合终端状态约束的随机线性二次最优控制研究

IF 1.2 Q2 MATHEMATICS, APPLIED
Yang Hongli
{"title":"具有二次和混合终端状态约束的随机线性二次最优控制研究","authors":"Yang Hongli","doi":"10.1155/2013/674327","DOIUrl":null,"url":null,"abstract":"This paper studies the indefinite stochastic LQ control problem \nwith quadratic and mixed terminal state equality constraints, which can \nbe transformed into a mathematical programming problem. By means \nof the Lagrangian multiplier theorem and Riesz representation theorem, the \nmain result given in this paper is the necessary condition for indefinite \nstochastic LQ control with quadratic and mixed terminal equality \nconstraints. The result shows that the different terminal state constraints \nwill cause the endpoint condition of the differential Riccati equation \nto be changed. It coincides with the indefinite stochastic LQ problem \nwith linear terminal state constraint, so the result given in this paper can \nbe viewed as the extension of the indefinite stochastic LQ problem \nwith the linear terminal state equality constraint. In order to guarantee \nthe existence and the uniqueness of the linear feedback control, a \nsufficient condition is also presented in the paper. A numerical example \nis presented at the end of the paper.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2013-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/674327","citationCount":"1","resultStr":"{\"title\":\"Study on Stochastic Linear Quadratic Optimal Control with Quadratic and Mixed Terminal State Constraints\",\"authors\":\"Yang Hongli\",\"doi\":\"10.1155/2013/674327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the indefinite stochastic LQ control problem \\nwith quadratic and mixed terminal state equality constraints, which can \\nbe transformed into a mathematical programming problem. By means \\nof the Lagrangian multiplier theorem and Riesz representation theorem, the \\nmain result given in this paper is the necessary condition for indefinite \\nstochastic LQ control with quadratic and mixed terminal equality \\nconstraints. The result shows that the different terminal state constraints \\nwill cause the endpoint condition of the differential Riccati equation \\nto be changed. It coincides with the indefinite stochastic LQ problem \\nwith linear terminal state constraint, so the result given in this paper can \\nbe viewed as the extension of the indefinite stochastic LQ problem \\nwith the linear terminal state equality constraint. In order to guarantee \\nthe existence and the uniqueness of the linear feedback control, a \\nsufficient condition is also presented in the paper. A numerical example \\nis presented at the end of the paper.\",\"PeriodicalId\":49251,\"journal\":{\"name\":\"Journal of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2013-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2013/674327\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/674327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/674327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

研究了具有二次和混合终端状态相等约束的不定随机LQ控制问题,该问题可转化为一个数学规划问题。利用拉格朗日乘子定理和Riesz表示定理,给出了具有二次和混合端等式约束的不确定随机LQ控制的必要条件。结果表明,不同的终端状态约束会使微分Riccati方程的端点条件发生改变。它与具有线性末端状态约束的不定随机LQ问题相吻合,因此本文所给出的结果可以看作是具有线性末端状态相等约束的不定随机LQ问题的推广。为了保证线性反馈控制的存在唯一性,给出了一个充分条件。最后给出了一个数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on Stochastic Linear Quadratic Optimal Control with Quadratic and Mixed Terminal State Constraints
This paper studies the indefinite stochastic LQ control problem with quadratic and mixed terminal state equality constraints, which can be transformed into a mathematical programming problem. By means of the Lagrangian multiplier theorem and Riesz representation theorem, the main result given in this paper is the necessary condition for indefinite stochastic LQ control with quadratic and mixed terminal equality constraints. The result shows that the different terminal state constraints will cause the endpoint condition of the differential Riccati equation to be changed. It coincides with the indefinite stochastic LQ problem with linear terminal state constraint, so the result given in this paper can be viewed as the extension of the indefinite stochastic LQ problem with the linear terminal state equality constraint. In order to guarantee the existence and the uniqueness of the linear feedback control, a sufficient condition is also presented in the paper. A numerical example is presented at the end of the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信