{"title":"BaVO陶瓷的复阻抗光谱特性","authors":"P. Khatri, B. Behera, V. Srinivas, R. Choudhary","doi":"10.1155/2008/746256","DOIUrl":null,"url":null,"abstract":"The polycrystalline sample of Ba3V2O8 was prepared by a high-temperature solid-state reaction technique. The effect of temperature on impedance parameters was studied using an impedance analyzer in a wide frequency range (102-106 Hz). The real and imaginary parts of complex impedance trace semicircles in the complex plane. The temperature-dependent plots reveal the presence of both bulk and grain boundary effects above 125∘C. The bulk resistance of the material decreases with rise in temperature. This exhibits a typical negative temperature coefficient of resistance (NTCR) behavior of the material. The modulus analysis suggests a possible hopping mechanism for electrical transport processes of the material. The nature of variation of dc conductivity suggests the Arrhenius type of electrical conductivity.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"2008 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2008/746256","citationCount":"25","resultStr":"{\"title\":\"Complex Impedance Spectroscopic Properties of BaVO Ceramics\",\"authors\":\"P. Khatri, B. Behera, V. Srinivas, R. Choudhary\",\"doi\":\"10.1155/2008/746256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The polycrystalline sample of Ba3V2O8 was prepared by a high-temperature solid-state reaction technique. The effect of temperature on impedance parameters was studied using an impedance analyzer in a wide frequency range (102-106 Hz). The real and imaginary parts of complex impedance trace semicircles in the complex plane. The temperature-dependent plots reveal the presence of both bulk and grain boundary effects above 125∘C. The bulk resistance of the material decreases with rise in temperature. This exhibits a typical negative temperature coefficient of resistance (NTCR) behavior of the material. The modulus analysis suggests a possible hopping mechanism for electrical transport processes of the material. The nature of variation of dc conductivity suggests the Arrhenius type of electrical conductivity.\",\"PeriodicalId\":7345,\"journal\":{\"name\":\"Advances in Materials Science and Engineering\",\"volume\":\"2008 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2008/746256\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2008/746256\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2008/746256","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Complex Impedance Spectroscopic Properties of BaVO Ceramics
The polycrystalline sample of Ba3V2O8 was prepared by a high-temperature solid-state reaction technique. The effect of temperature on impedance parameters was studied using an impedance analyzer in a wide frequency range (102-106 Hz). The real and imaginary parts of complex impedance trace semicircles in the complex plane. The temperature-dependent plots reveal the presence of both bulk and grain boundary effects above 125∘C. The bulk resistance of the material decreases with rise in temperature. This exhibits a typical negative temperature coefficient of resistance (NTCR) behavior of the material. The modulus analysis suggests a possible hopping mechanism for electrical transport processes of the material. The nature of variation of dc conductivity suggests the Arrhenius type of electrical conductivity.
期刊介绍:
Advances in Materials Science and Engineering is a broad scope journal that publishes articles in all areas of materials science and engineering including, but not limited to:
-Chemistry and fundamental properties of matter
-Material synthesis, fabrication, manufacture, and processing
-Magnetic, electrical, thermal, and optical properties of materials
-Strength, durability, and mechanical behaviour of materials
-Consideration of materials in structural design, modelling, and engineering
-Green and renewable materials, and consideration of materials’ life cycles
-Materials in specialist applications (such as medicine, energy, aerospace, and nanotechnology)