{"title":"mn掺杂ZnS纳米晶体的表面钝化和光致发光","authors":"Ping Yang, M. Bredol","doi":"10.1155/2008/506065","DOIUrl":null,"url":null,"abstract":"Enhanced photoluminescence (PL) is reported from Mn-doped ZnS nanocrystals (NCs) capped with ZnS (ZnS:Mn/ZnS core-shell NCs) and thioglycolic acid (TGA) (ZnS:Mn/ZnS core-shell NCs dispersed in an alkaline TGA solution). The NCs were prepared using a reverse micelle route. Comparing with initial ZnS:Mn core NCs, the ZnS:Mn/ZnS core-shell NCs exhibit much stronger orange PL (~580 nm). This is presumably the result of effective passivation of quenching ZnS:Mn NCs surface states by a pure ZnS shell. As for TGA-capped ZnS:Mn/ZnS core-shell NCs, the parallel decrease of a defect-related emission of ZnS is associated with the formation of a shell surface layer of TGA-Zn complexes. In summary, the combination of ZnS shells with TGA ligands was demonstrated to yield ZnS:Mn NCs with narrow size distribution and intense PL.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"25 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2008/506065","citationCount":"13","resultStr":"{\"title\":\"Surface Passivation and Photoluminescence of Mn-Doped ZnS Nanocrystals\",\"authors\":\"Ping Yang, M. Bredol\",\"doi\":\"10.1155/2008/506065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enhanced photoluminescence (PL) is reported from Mn-doped ZnS nanocrystals (NCs) capped with ZnS (ZnS:Mn/ZnS core-shell NCs) and thioglycolic acid (TGA) (ZnS:Mn/ZnS core-shell NCs dispersed in an alkaline TGA solution). The NCs were prepared using a reverse micelle route. Comparing with initial ZnS:Mn core NCs, the ZnS:Mn/ZnS core-shell NCs exhibit much stronger orange PL (~580 nm). This is presumably the result of effective passivation of quenching ZnS:Mn NCs surface states by a pure ZnS shell. As for TGA-capped ZnS:Mn/ZnS core-shell NCs, the parallel decrease of a defect-related emission of ZnS is associated with the formation of a shell surface layer of TGA-Zn complexes. In summary, the combination of ZnS shells with TGA ligands was demonstrated to yield ZnS:Mn NCs with narrow size distribution and intense PL.\",\"PeriodicalId\":7345,\"journal\":{\"name\":\"Advances in Materials Science and Engineering\",\"volume\":\"25 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2008/506065\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2008/506065\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2008/506065","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Surface Passivation and Photoluminescence of Mn-Doped ZnS Nanocrystals
Enhanced photoluminescence (PL) is reported from Mn-doped ZnS nanocrystals (NCs) capped with ZnS (ZnS:Mn/ZnS core-shell NCs) and thioglycolic acid (TGA) (ZnS:Mn/ZnS core-shell NCs dispersed in an alkaline TGA solution). The NCs were prepared using a reverse micelle route. Comparing with initial ZnS:Mn core NCs, the ZnS:Mn/ZnS core-shell NCs exhibit much stronger orange PL (~580 nm). This is presumably the result of effective passivation of quenching ZnS:Mn NCs surface states by a pure ZnS shell. As for TGA-capped ZnS:Mn/ZnS core-shell NCs, the parallel decrease of a defect-related emission of ZnS is associated with the formation of a shell surface layer of TGA-Zn complexes. In summary, the combination of ZnS shells with TGA ligands was demonstrated to yield ZnS:Mn NCs with narrow size distribution and intense PL.
期刊介绍:
Advances in Materials Science and Engineering is a broad scope journal that publishes articles in all areas of materials science and engineering including, but not limited to:
-Chemistry and fundamental properties of matter
-Material synthesis, fabrication, manufacture, and processing
-Magnetic, electrical, thermal, and optical properties of materials
-Strength, durability, and mechanical behaviour of materials
-Consideration of materials in structural design, modelling, and engineering
-Green and renewable materials, and consideration of materials’ life cycles
-Materials in specialist applications (such as medicine, energy, aerospace, and nanotechnology)