{"title":"钛合金摩擦行为的解析描述","authors":"N. Christakis, A. Vairis","doi":"10.1155/2007/92170","DOIUrl":null,"url":null,"abstract":"In recent years, significant effort has been put in the enhancement of our understanding of the physics and mechanics of moving objects under contact. Developed theoretical models can not fully account for the observed frictional behaviour of materials due to the lack of understanding of the interaction processes which occur at the microscopic level. In this paper, an analytical contact model will be described and its application to a titanium alloy will be presented. Conclusions will be drawn on the ability of this model to describe different friction regimes. The inclusion of additional factors which impact on frictional behaviour will be discussed, as well as the derivation of constitutive equations and their utilisation in continuum models.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"2007 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2007/92170","citationCount":"4","resultStr":"{\"title\":\"An Analytical Description of the Frictional Behaviour of a Titanium Alloy\",\"authors\":\"N. Christakis, A. Vairis\",\"doi\":\"10.1155/2007/92170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, significant effort has been put in the enhancement of our understanding of the physics and mechanics of moving objects under contact. Developed theoretical models can not fully account for the observed frictional behaviour of materials due to the lack of understanding of the interaction processes which occur at the microscopic level. In this paper, an analytical contact model will be described and its application to a titanium alloy will be presented. Conclusions will be drawn on the ability of this model to describe different friction regimes. The inclusion of additional factors which impact on frictional behaviour will be discussed, as well as the derivation of constitutive equations and their utilisation in continuum models.\",\"PeriodicalId\":7345,\"journal\":{\"name\":\"Advances in Materials Science and Engineering\",\"volume\":\"2007 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2007/92170\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2007/92170\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2007/92170","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
An Analytical Description of the Frictional Behaviour of a Titanium Alloy
In recent years, significant effort has been put in the enhancement of our understanding of the physics and mechanics of moving objects under contact. Developed theoretical models can not fully account for the observed frictional behaviour of materials due to the lack of understanding of the interaction processes which occur at the microscopic level. In this paper, an analytical contact model will be described and its application to a titanium alloy will be presented. Conclusions will be drawn on the ability of this model to describe different friction regimes. The inclusion of additional factors which impact on frictional behaviour will be discussed, as well as the derivation of constitutive equations and their utilisation in continuum models.
期刊介绍:
Advances in Materials Science and Engineering is a broad scope journal that publishes articles in all areas of materials science and engineering including, but not limited to:
-Chemistry and fundamental properties of matter
-Material synthesis, fabrication, manufacture, and processing
-Magnetic, electrical, thermal, and optical properties of materials
-Strength, durability, and mechanical behaviour of materials
-Consideration of materials in structural design, modelling, and engineering
-Green and renewable materials, and consideration of materials’ life cycles
-Materials in specialist applications (such as medicine, energy, aerospace, and nanotechnology)