{"title":"包覆PC12神经细胞系的海藻酸盐链嵌入多材料三维结构的生物制造","authors":"R. Dreher, B. Starly","doi":"10.1115/1.4031173","DOIUrl":null,"url":null,"abstract":"In this study, we report the bioprinting of a three-dimensional (3D) heterogeneous conduit structure encapsulating PC12 neural cells. A core–shell-based hybrid construct is fabricated by combining electrospinning, polymer extrusion, and cell-based bioprinting processes to create a multiscale and multimaterial conduit structure. PC12 nerve cells were shown to be printed with high cell viability (>95%) and to proliferate within the rolled construct at a rate consistent with traditional two-dimensional (2D) culture. Light microscopy and scanning electron microscopy (SEM) have also shown encapsulation of cells within the printed alginate gel and an even cell distribution throughout the heterogeneous cellular construct.","PeriodicalId":73845,"journal":{"name":"Journal of nanotechnology in engineering and medicine","volume":"6 1","pages":"021004"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4031173","citationCount":"6","resultStr":"{\"title\":\"Biofabrication of Multimaterial Three-Dimensional Constructs Embedded With Patterned Alginate Strands Encapsulating PC12 Neural Cell Lines\",\"authors\":\"R. Dreher, B. Starly\",\"doi\":\"10.1115/1.4031173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we report the bioprinting of a three-dimensional (3D) heterogeneous conduit structure encapsulating PC12 neural cells. A core–shell-based hybrid construct is fabricated by combining electrospinning, polymer extrusion, and cell-based bioprinting processes to create a multiscale and multimaterial conduit structure. PC12 nerve cells were shown to be printed with high cell viability (>95%) and to proliferate within the rolled construct at a rate consistent with traditional two-dimensional (2D) culture. Light microscopy and scanning electron microscopy (SEM) have also shown encapsulation of cells within the printed alginate gel and an even cell distribution throughout the heterogeneous cellular construct.\",\"PeriodicalId\":73845,\"journal\":{\"name\":\"Journal of nanotechnology in engineering and medicine\",\"volume\":\"6 1\",\"pages\":\"021004\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1115/1.4031173\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nanotechnology in engineering and medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4031173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanotechnology in engineering and medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4031173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biofabrication of Multimaterial Three-Dimensional Constructs Embedded With Patterned Alginate Strands Encapsulating PC12 Neural Cell Lines
In this study, we report the bioprinting of a three-dimensional (3D) heterogeneous conduit structure encapsulating PC12 neural cells. A core–shell-based hybrid construct is fabricated by combining electrospinning, polymer extrusion, and cell-based bioprinting processes to create a multiscale and multimaterial conduit structure. PC12 nerve cells were shown to be printed with high cell viability (>95%) and to proliferate within the rolled construct at a rate consistent with traditional two-dimensional (2D) culture. Light microscopy and scanning electron microscopy (SEM) have also shown encapsulation of cells within the printed alginate gel and an even cell distribution throughout the heterogeneous cellular construct.