{"title":"集流器对阳极支撑微管固体氧化物燃料电池性能的影响","authors":"M. Casarin, V. Sglavo","doi":"10.1115/1.4029875","DOIUrl":null,"url":null,"abstract":"Microtubular anode-supported solid oxide fuel cells (lt-SOFC) were created with ametallic coil embedded in the anode to act as current collector. The electrochemical per-formance was experimentally examined by comparing the power density (PD) oflt-SOFC with embedded coils of different turns per unit length and composition (nickeland palladium). It is shown that an increase in the turns per unit length results in a pro-portional current density increase and in a quadratic increment of PD. Additional per-formance improvement is found for the cell with palladium current collector due to thehigher catalytic activity for hydrogen oxidation. [DOI: 10.1115/1.4029875]Keywords: current collector, anode-supported SOFC, microtubular SOFC, electrochemicalperformance","PeriodicalId":15829,"journal":{"name":"Journal of Fuel Cell Science and Technology","volume":"12 1","pages":"031005"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4029875","citationCount":"6","resultStr":"{\"title\":\"Effect of the Current Collector on Performance of Anode-Supported Microtubular Solid Oxide Fuel Cells\",\"authors\":\"M. Casarin, V. Sglavo\",\"doi\":\"10.1115/1.4029875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microtubular anode-supported solid oxide fuel cells (lt-SOFC) were created with ametallic coil embedded in the anode to act as current collector. The electrochemical per-formance was experimentally examined by comparing the power density (PD) oflt-SOFC with embedded coils of different turns per unit length and composition (nickeland palladium). It is shown that an increase in the turns per unit length results in a pro-portional current density increase and in a quadratic increment of PD. Additional per-formance improvement is found for the cell with palladium current collector due to thehigher catalytic activity for hydrogen oxidation. [DOI: 10.1115/1.4029875]Keywords: current collector, anode-supported SOFC, microtubular SOFC, electrochemicalperformance\",\"PeriodicalId\":15829,\"journal\":{\"name\":\"Journal of Fuel Cell Science and Technology\",\"volume\":\"12 1\",\"pages\":\"031005\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1115/1.4029875\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fuel Cell Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4029875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuel Cell Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4029875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of the Current Collector on Performance of Anode-Supported Microtubular Solid Oxide Fuel Cells
Microtubular anode-supported solid oxide fuel cells (lt-SOFC) were created with ametallic coil embedded in the anode to act as current collector. The electrochemical per-formance was experimentally examined by comparing the power density (PD) oflt-SOFC with embedded coils of different turns per unit length and composition (nickeland palladium). It is shown that an increase in the turns per unit length results in a pro-portional current density increase and in a quadratic increment of PD. Additional per-formance improvement is found for the cell with palladium current collector due to thehigher catalytic activity for hydrogen oxidation. [DOI: 10.1115/1.4029875]Keywords: current collector, anode-supported SOFC, microtubular SOFC, electrochemicalperformance
期刊介绍:
The Journal of Fuel Cell Science and Technology publishes peer-reviewed archival scholarly articles, Research Papers, Technical Briefs, and feature articles on all aspects of the science, engineering, and manufacturing of fuel cells of all types. Specific areas of importance include, but are not limited to: development of constituent materials, joining, bonding, connecting, interface/interphase regions, and seals, cell design, processing and manufacturing, multi-scale modeling, combined and coupled behavior, aging, durability and damage tolerance, reliability, availability, stack design, processing and manufacturing, system design and manufacturing, power electronics, optimization and control, fuel cell applications, and fuels and infrastructure.