A. A. Khurram, S. A. Rakha, N. Ali, I. Gul, A. Munir
{"title":"纳米复合材料的微波性能:制备方法和纳米填料结构的影响","authors":"A. A. Khurram, S. A. Rakha, N. Ali, I. Gul, A. Munir","doi":"10.1115/1.4029916","DOIUrl":null,"url":null,"abstract":"Nanocomposite materials filled with multiwall carbon nanotubes (MWCNTs) having three types of structures, i.e., longer (200lm), shorter (20‐50lm), and aminated (20‐50lm), are manufactured for microwave absorption (MA) in 11‐17GHz frequency range. Microstructure, dielectric permittivity, direct current (DC) electrical conductivity, and MA properties of the MWCNTs‐epoxy nanocomposite were investigated. A correlation has been developed between the structure (aspect ratio and surface functionality) of MWCNTs, electrical conductivity of the composite, and MA (return loss (RL)). E-glass/epoxy composite filled with longer carbon nanotubes (CNTs) has shown higher RL as compared to that of other two nanocomposites. The measurements have shown that the magnitude of RL of microwaves depends strongly on the structure of MWCNTs used in the composite. Furthermore, the effect of synthesis route followed for the manufacturing of nanocomposite on its electrical conductivity and microwave absorbing properties is also investigated; three different approaches were followed to manufacture CNT/epoxy nanocomposites from longer CNTs (200lm). [DOI: 10.1115/1.4029916]","PeriodicalId":73845,"journal":{"name":"Journal of nanotechnology in engineering and medicine","volume":"6 1","pages":"014501"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4029916","citationCount":"0","resultStr":"{\"title\":\"Microwave Properties of Nanocomposites: Effect of Manufacturing Methods and Nanofiller Structure\",\"authors\":\"A. A. Khurram, S. A. Rakha, N. Ali, I. Gul, A. Munir\",\"doi\":\"10.1115/1.4029916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanocomposite materials filled with multiwall carbon nanotubes (MWCNTs) having three types of structures, i.e., longer (200lm), shorter (20‐50lm), and aminated (20‐50lm), are manufactured for microwave absorption (MA) in 11‐17GHz frequency range. Microstructure, dielectric permittivity, direct current (DC) electrical conductivity, and MA properties of the MWCNTs‐epoxy nanocomposite were investigated. A correlation has been developed between the structure (aspect ratio and surface functionality) of MWCNTs, electrical conductivity of the composite, and MA (return loss (RL)). E-glass/epoxy composite filled with longer carbon nanotubes (CNTs) has shown higher RL as compared to that of other two nanocomposites. The measurements have shown that the magnitude of RL of microwaves depends strongly on the structure of MWCNTs used in the composite. Furthermore, the effect of synthesis route followed for the manufacturing of nanocomposite on its electrical conductivity and microwave absorbing properties is also investigated; three different approaches were followed to manufacture CNT/epoxy nanocomposites from longer CNTs (200lm). [DOI: 10.1115/1.4029916]\",\"PeriodicalId\":73845,\"journal\":{\"name\":\"Journal of nanotechnology in engineering and medicine\",\"volume\":\"6 1\",\"pages\":\"014501\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1115/1.4029916\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nanotechnology in engineering and medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4029916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanotechnology in engineering and medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4029916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microwave Properties of Nanocomposites: Effect of Manufacturing Methods and Nanofiller Structure
Nanocomposite materials filled with multiwall carbon nanotubes (MWCNTs) having three types of structures, i.e., longer (200lm), shorter (20‐50lm), and aminated (20‐50lm), are manufactured for microwave absorption (MA) in 11‐17GHz frequency range. Microstructure, dielectric permittivity, direct current (DC) electrical conductivity, and MA properties of the MWCNTs‐epoxy nanocomposite were investigated. A correlation has been developed between the structure (aspect ratio and surface functionality) of MWCNTs, electrical conductivity of the composite, and MA (return loss (RL)). E-glass/epoxy composite filled with longer carbon nanotubes (CNTs) has shown higher RL as compared to that of other two nanocomposites. The measurements have shown that the magnitude of RL of microwaves depends strongly on the structure of MWCNTs used in the composite. Furthermore, the effect of synthesis route followed for the manufacturing of nanocomposite on its electrical conductivity and microwave absorbing properties is also investigated; three different approaches were followed to manufacture CNT/epoxy nanocomposites from longer CNTs (200lm). [DOI: 10.1115/1.4029916]