{"title":"识别咳嗽声音的深度神经网络","authors":"Justice Amoh, K. Odame","doi":"10.1109/TBCAS.2016.2598794","DOIUrl":null,"url":null,"abstract":"In this paper, we consider two different approaches of using deep neural networks for cough detection. The cough detection task is cast as a visual recognition problem and as a sequence-to-sequence labeling problem. A convolutional neural network and a recurrent neural network are implemented to address these problems, respectively. We evaluate the performance of the two networks and compare them to other conventional approaches for identifying cough sounds. In addition, we also explore the effect of the network size parameters and the impact of long-term signal dependencies in cough classifier performance. Experimental results show both network architectures outperform traditional methods. Between the two, our convolutional network yields a higher specificity 92.7% whereas the recurrent attains a higher sensitivity of 87.7%.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2016-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TBCAS.2016.2598794","citationCount":"98","resultStr":"{\"title\":\"Deep Neural Networks for Identifying Cough Sounds\",\"authors\":\"Justice Amoh, K. Odame\",\"doi\":\"10.1109/TBCAS.2016.2598794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider two different approaches of using deep neural networks for cough detection. The cough detection task is cast as a visual recognition problem and as a sequence-to-sequence labeling problem. A convolutional neural network and a recurrent neural network are implemented to address these problems, respectively. We evaluate the performance of the two networks and compare them to other conventional approaches for identifying cough sounds. In addition, we also explore the effect of the network size parameters and the impact of long-term signal dependencies in cough classifier performance. Experimental results show both network architectures outperform traditional methods. Between the two, our convolutional network yields a higher specificity 92.7% whereas the recurrent attains a higher sensitivity of 87.7%.\",\"PeriodicalId\":13151,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2016-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TBCAS.2016.2598794\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2016.2598794\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBCAS.2016.2598794","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
In this paper, we consider two different approaches of using deep neural networks for cough detection. The cough detection task is cast as a visual recognition problem and as a sequence-to-sequence labeling problem. A convolutional neural network and a recurrent neural network are implemented to address these problems, respectively. We evaluate the performance of the two networks and compare them to other conventional approaches for identifying cough sounds. In addition, we also explore the effect of the network size parameters and the impact of long-term signal dependencies in cough classifier performance. Experimental results show both network architectures outperform traditional methods. Between the two, our convolutional network yields a higher specificity 92.7% whereas the recurrent attains a higher sensitivity of 87.7%.
期刊介绍:
The IEEE Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems Society to a wide variety of related areas such as: • Bioelectronics • Implantable and wearable electronics like cochlear and retinal prosthesis, motor control, etc. • Biotechnology sensor circuits, integrated systems, and networks • Micropower imaging technology • BioMEMS • Lab-on-chip Bio-nanotechnology • Organic Semiconductors • Biomedical Engineering • Genomics and Proteomics • Neuromorphic Engineering • Smart sensors • Low power micro- and nanoelectronics • Mixed-mode system-on-chip • Wireless technology • Gene circuits and molecular circuits • System biology • Brain science and engineering: such as neuro-informatics, neural prosthesis, cognitive engineering, brain computer interface • Healthcare: information technology for biomedical, epidemiology, and other related life science applications. General, theoretical, and application-oriented papers in the abovementioned technical areas with a Circuits and Systems perspective are encouraged to publish in TBioCAS. Of special interest are biomedical-oriented papers with a Circuits and Systems angle.