{"title":"利用单细胞数据预测临床预后。","authors":"M. Pouyan, V. Jindal, M. Nourani","doi":"10.1109/TBCAS.2016.2577641","DOIUrl":null,"url":null,"abstract":"Single-cell technologies like flow cytometry (FCM) provide valuable biological data for knowledge discovery in complex cellular systems like tissues and organs. FCM data contains multi-dimensional information about the cellular heterogeneity of intricate cellular systems. It is possible to correlate single-cell markers with phenotypic properties of those systems. Cell population identification and clinical outcome prediction from single-cell measurements are challenging problems in the field of single cell analysis. In this paper, we propose a hybrid learning approach to predict clinical outcome using samples' single-cell FCM data. The proposed method is efficient in both i) identification of cellular clusters in each sample's FCM data and ii) predict clinical outcome (healthy versus unhealthy) for each subject. Our method is robust and the experimental results indicate promising performance.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TBCAS.2016.2577641","citationCount":"0","resultStr":"{\"title\":\"Clinical Outcome Prediction Using Single-Cell Data.\",\"authors\":\"M. Pouyan, V. Jindal, M. Nourani\",\"doi\":\"10.1109/TBCAS.2016.2577641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell technologies like flow cytometry (FCM) provide valuable biological data for knowledge discovery in complex cellular systems like tissues and organs. FCM data contains multi-dimensional information about the cellular heterogeneity of intricate cellular systems. It is possible to correlate single-cell markers with phenotypic properties of those systems. Cell population identification and clinical outcome prediction from single-cell measurements are challenging problems in the field of single cell analysis. In this paper, we propose a hybrid learning approach to predict clinical outcome using samples' single-cell FCM data. The proposed method is efficient in both i) identification of cellular clusters in each sample's FCM data and ii) predict clinical outcome (healthy versus unhealthy) for each subject. Our method is robust and the experimental results indicate promising performance.\",\"PeriodicalId\":13151,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TBCAS.2016.2577641\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2016.2577641\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBCAS.2016.2577641","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Clinical Outcome Prediction Using Single-Cell Data.
Single-cell technologies like flow cytometry (FCM) provide valuable biological data for knowledge discovery in complex cellular systems like tissues and organs. FCM data contains multi-dimensional information about the cellular heterogeneity of intricate cellular systems. It is possible to correlate single-cell markers with phenotypic properties of those systems. Cell population identification and clinical outcome prediction from single-cell measurements are challenging problems in the field of single cell analysis. In this paper, we propose a hybrid learning approach to predict clinical outcome using samples' single-cell FCM data. The proposed method is efficient in both i) identification of cellular clusters in each sample's FCM data and ii) predict clinical outcome (healthy versus unhealthy) for each subject. Our method is robust and the experimental results indicate promising performance.
期刊介绍:
The IEEE Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems Society to a wide variety of related areas such as: • Bioelectronics • Implantable and wearable electronics like cochlear and retinal prosthesis, motor control, etc. • Biotechnology sensor circuits, integrated systems, and networks • Micropower imaging technology • BioMEMS • Lab-on-chip Bio-nanotechnology • Organic Semiconductors • Biomedical Engineering • Genomics and Proteomics • Neuromorphic Engineering • Smart sensors • Low power micro- and nanoelectronics • Mixed-mode system-on-chip • Wireless technology • Gene circuits and molecular circuits • System biology • Brain science and engineering: such as neuro-informatics, neural prosthesis, cognitive engineering, brain computer interface • Healthcare: information technology for biomedical, epidemiology, and other related life science applications. General, theoretical, and application-oriented papers in the abovementioned technical areas with a Circuits and Systems perspective are encouraged to publish in TBioCAS. Of special interest are biomedical-oriented papers with a Circuits and Systems angle.