C. Baj-Rossi, A. Cavallini, Enver G. Kilinc, Francesca Stradolini, T. Rezzonico Jost, M. Proietti, G. De Micheli, F. Grassi, C. Dehollain, S. Carrara
{"title":"用于代谢远程监测的全植入式多面板设备的体内验证。","authors":"C. Baj-Rossi, A. Cavallini, Enver G. Kilinc, Francesca Stradolini, T. Rezzonico Jost, M. Proietti, G. De Micheli, F. Grassi, C. Dehollain, S. Carrara","doi":"10.1109/TBCAS.2016.2584239","DOIUrl":null,"url":null,"abstract":"This paper presents the in-vivo tests on a Fully Implantable Multi-Panel Devices for Remote Monitoring of endogenous and exogenous analytes. To investigate issues on biocompatibility, three different covers have been designed, realized and tested in mice for 30 days. ATP and neutrophil concentrations have been measured, at the implant site after the device was explanted, to assess the level of biocompatibility of the device. Finally, fully working prototypes of the device were implanted in mice and tested. The implanted devices were used to detect variations in the physiological concentrations of glucose and paracetamol. Data trends on these analytes have been successfully acquired and transmitted to the external base station. Glucose and paracetamol (also named acetaminophen) have been proposed in this research as model molecules for applications to personalized and translational medicine.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TBCAS.2016.2584239","citationCount":"3","resultStr":"{\"title\":\"In-Vivo Validation of Fully Implantable Multi-Panel Devices for Remote Monitoring of Metabolism.\",\"authors\":\"C. Baj-Rossi, A. Cavallini, Enver G. Kilinc, Francesca Stradolini, T. Rezzonico Jost, M. Proietti, G. De Micheli, F. Grassi, C. Dehollain, S. Carrara\",\"doi\":\"10.1109/TBCAS.2016.2584239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the in-vivo tests on a Fully Implantable Multi-Panel Devices for Remote Monitoring of endogenous and exogenous analytes. To investigate issues on biocompatibility, three different covers have been designed, realized and tested in mice for 30 days. ATP and neutrophil concentrations have been measured, at the implant site after the device was explanted, to assess the level of biocompatibility of the device. Finally, fully working prototypes of the device were implanted in mice and tested. The implanted devices were used to detect variations in the physiological concentrations of glucose and paracetamol. Data trends on these analytes have been successfully acquired and transmitted to the external base station. Glucose and paracetamol (also named acetaminophen) have been proposed in this research as model molecules for applications to personalized and translational medicine.\",\"PeriodicalId\":13151,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TBCAS.2016.2584239\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2016.2584239\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBCAS.2016.2584239","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
In-Vivo Validation of Fully Implantable Multi-Panel Devices for Remote Monitoring of Metabolism.
This paper presents the in-vivo tests on a Fully Implantable Multi-Panel Devices for Remote Monitoring of endogenous and exogenous analytes. To investigate issues on biocompatibility, three different covers have been designed, realized and tested in mice for 30 days. ATP and neutrophil concentrations have been measured, at the implant site after the device was explanted, to assess the level of biocompatibility of the device. Finally, fully working prototypes of the device were implanted in mice and tested. The implanted devices were used to detect variations in the physiological concentrations of glucose and paracetamol. Data trends on these analytes have been successfully acquired and transmitted to the external base station. Glucose and paracetamol (also named acetaminophen) have been proposed in this research as model molecules for applications to personalized and translational medicine.
期刊介绍:
The IEEE Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems Society to a wide variety of related areas such as: • Bioelectronics • Implantable and wearable electronics like cochlear and retinal prosthesis, motor control, etc. • Biotechnology sensor circuits, integrated systems, and networks • Micropower imaging technology • BioMEMS • Lab-on-chip Bio-nanotechnology • Organic Semiconductors • Biomedical Engineering • Genomics and Proteomics • Neuromorphic Engineering • Smart sensors • Low power micro- and nanoelectronics • Mixed-mode system-on-chip • Wireless technology • Gene circuits and molecular circuits • System biology • Brain science and engineering: such as neuro-informatics, neural prosthesis, cognitive engineering, brain computer interface • Healthcare: information technology for biomedical, epidemiology, and other related life science applications. General, theoretical, and application-oriented papers in the abovementioned technical areas with a Circuits and Systems perspective are encouraged to publish in TBioCAS. Of special interest are biomedical-oriented papers with a Circuits and Systems angle.