A. Donida, G. Dato, Paolo Cunzolo, M. Sala, Filippo Piffaretti, P. Orsatti, D. Barrettino
{"title":"用于智能植入式晶体的昼夜节律和心脏眼内压传感器","authors":"A. Donida, G. Dato, Paolo Cunzolo, M. Sala, Filippo Piffaretti, P. Orsatti, D. Barrettino","doi":"10.1109/TBCAS.2015.2501320","DOIUrl":null,"url":null,"abstract":"This paper presents a new system to measure the Intraocular Pressure (IOP) with very high accuracy (0.036 mbar) used for monitoring glaucoma. The system not only monitors the daily variation of the IOP (circadian IOP), but also allows to perform an spectral analysis of the pressure signal generated by the heartbeat (cardiac IOP). The system comprises a piezoresistive pressure sensor, an application-specific integrated circuit (ASIC) to read out the sensor data and an external reader installed on customized glasses. The ASIC readout electronics combines chopping modulation with correlated double sampling (CDS) in order to eliminate both the amplifier offset and the chopper ripple at the sampling frequency. In addition, programmable current sources are used to compensate for the atmospheric pressure ( 800-1200 mbar ) and the circadian component ( ±7 mbar) thus allowing to read out the very weak cardiac signals ( ±1.6 mbar) with a maximum accuracy of 0.036 mbar.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"9 1","pages":"777-789"},"PeriodicalIF":3.8000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TBCAS.2015.2501320","citationCount":"34","resultStr":"{\"title\":\"A Circadian and Cardiac Intraocular Pressure Sensor for Smart Implantable Lens\",\"authors\":\"A. Donida, G. Dato, Paolo Cunzolo, M. Sala, Filippo Piffaretti, P. Orsatti, D. Barrettino\",\"doi\":\"10.1109/TBCAS.2015.2501320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new system to measure the Intraocular Pressure (IOP) with very high accuracy (0.036 mbar) used for monitoring glaucoma. The system not only monitors the daily variation of the IOP (circadian IOP), but also allows to perform an spectral analysis of the pressure signal generated by the heartbeat (cardiac IOP). The system comprises a piezoresistive pressure sensor, an application-specific integrated circuit (ASIC) to read out the sensor data and an external reader installed on customized glasses. The ASIC readout electronics combines chopping modulation with correlated double sampling (CDS) in order to eliminate both the amplifier offset and the chopper ripple at the sampling frequency. In addition, programmable current sources are used to compensate for the atmospheric pressure ( 800-1200 mbar ) and the circadian component ( ±7 mbar) thus allowing to read out the very weak cardiac signals ( ±1.6 mbar) with a maximum accuracy of 0.036 mbar.\",\"PeriodicalId\":13151,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"volume\":\"9 1\",\"pages\":\"777-789\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TBCAS.2015.2501320\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2015.2501320\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBCAS.2015.2501320","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Circadian and Cardiac Intraocular Pressure Sensor for Smart Implantable Lens
This paper presents a new system to measure the Intraocular Pressure (IOP) with very high accuracy (0.036 mbar) used for monitoring glaucoma. The system not only monitors the daily variation of the IOP (circadian IOP), but also allows to perform an spectral analysis of the pressure signal generated by the heartbeat (cardiac IOP). The system comprises a piezoresistive pressure sensor, an application-specific integrated circuit (ASIC) to read out the sensor data and an external reader installed on customized glasses. The ASIC readout electronics combines chopping modulation with correlated double sampling (CDS) in order to eliminate both the amplifier offset and the chopper ripple at the sampling frequency. In addition, programmable current sources are used to compensate for the atmospheric pressure ( 800-1200 mbar ) and the circadian component ( ±7 mbar) thus allowing to read out the very weak cardiac signals ( ±1.6 mbar) with a maximum accuracy of 0.036 mbar.
期刊介绍:
The IEEE Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems Society to a wide variety of related areas such as: • Bioelectronics • Implantable and wearable electronics like cochlear and retinal prosthesis, motor control, etc. • Biotechnology sensor circuits, integrated systems, and networks • Micropower imaging technology • BioMEMS • Lab-on-chip Bio-nanotechnology • Organic Semiconductors • Biomedical Engineering • Genomics and Proteomics • Neuromorphic Engineering • Smart sensors • Low power micro- and nanoelectronics • Mixed-mode system-on-chip • Wireless technology • Gene circuits and molecular circuits • System biology • Brain science and engineering: such as neuro-informatics, neural prosthesis, cognitive engineering, brain computer interface • Healthcare: information technology for biomedical, epidemiology, and other related life science applications. General, theoretical, and application-oriented papers in the abovementioned technical areas with a Circuits and Systems perspective are encouraged to publish in TBioCAS. Of special interest are biomedical-oriented papers with a Circuits and Systems angle.