稀疏度校正超图随机块模型光谱聚类的强一致性

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chong Deng;Xin-Jian Xu;Shihui Ying
{"title":"稀疏度校正超图随机块模型光谱聚类的强一致性","authors":"Chong Deng;Xin-Jian Xu;Shihui Ying","doi":"10.1109/TIT.2023.3302283","DOIUrl":null,"url":null,"abstract":"We prove strong consistency of spectral clustering under the degree-corrected hypergraph stochastic block model in the sparse regime where the maximum expected hyperdegree is as small as \n<inline-formula> <tex-math>$\\Omega (\\log n)$ </tex-math></inline-formula>\n with \n<inline-formula> <tex-math>$n$ </tex-math></inline-formula>\n denoting the number of nodes. We show that the basic spectral clustering without preprocessing or postprocessing is strongly consistent in an even wider range of the model parameters, in contrast to previous studies that either trim high-degree nodes or perform local refinement. At the heart of our analysis is the entry-wise eigenvector perturbation bound derived by the “leave-one-out”technique. To the best of our knowledge, this is the first entry-wise error bound for degree-corrected hypergraph models, resulting in the strong consistency for clustering non-uniform hypergraphs with heterogeneous hyperdegrees.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 3","pages":"1962-1977"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong Consistency of Spectral Clustering for the Sparse Degree-Corrected Hypergraph Stochastic Block Model\",\"authors\":\"Chong Deng;Xin-Jian Xu;Shihui Ying\",\"doi\":\"10.1109/TIT.2023.3302283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove strong consistency of spectral clustering under the degree-corrected hypergraph stochastic block model in the sparse regime where the maximum expected hyperdegree is as small as \\n<inline-formula> <tex-math>$\\\\Omega (\\\\log n)$ </tex-math></inline-formula>\\n with \\n<inline-formula> <tex-math>$n$ </tex-math></inline-formula>\\n denoting the number of nodes. We show that the basic spectral clustering without preprocessing or postprocessing is strongly consistent in an even wider range of the model parameters, in contrast to previous studies that either trim high-degree nodes or perform local refinement. At the heart of our analysis is the entry-wise eigenvector perturbation bound derived by the “leave-one-out”technique. To the best of our knowledge, this is the first entry-wise error bound for degree-corrected hypergraph models, resulting in the strong consistency for clustering non-uniform hypergraphs with heterogeneous hyperdegrees.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"70 3\",\"pages\":\"1962-1977\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10214123/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10214123/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了阶数校正超图随机块模型下的谱聚类在稀疏体系中的强一致性,在稀疏体系中,最大预期超度小至 $\Omega (\log n)$,其中 $n$ 表示节点数。我们的研究表明,在更宽的模型参数范围内,无需预处理或后处理的基本谱聚类具有很强的一致性,这与之前修剪高阶节点或进行局部细化的研究形成了鲜明对比。我们分析的核心是由 "leave-one-out "技术推导出的条目式特征向量扰动约束。据我们所知,这是首个针对度校正超图模型的入口误差约束,从而为具有异质超度的非均匀超图聚类提供了强大的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong Consistency of Spectral Clustering for the Sparse Degree-Corrected Hypergraph Stochastic Block Model
We prove strong consistency of spectral clustering under the degree-corrected hypergraph stochastic block model in the sparse regime where the maximum expected hyperdegree is as small as $\Omega (\log n)$ with $n$ denoting the number of nodes. We show that the basic spectral clustering without preprocessing or postprocessing is strongly consistent in an even wider range of the model parameters, in contrast to previous studies that either trim high-degree nodes or perform local refinement. At the heart of our analysis is the entry-wise eigenvector perturbation bound derived by the “leave-one-out”technique. To the best of our knowledge, this is the first entry-wise error bound for degree-corrected hypergraph models, resulting in the strong consistency for clustering non-uniform hypergraphs with heterogeneous hyperdegrees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信