激光微加工柔性超声线阵列及亚平面多模态成像应用

Jianzhong Chen;Wei Liu;Dawei Wu;Hu Ye
{"title":"激光微加工柔性超声线阵列及亚平面多模态成像应用","authors":"Jianzhong Chen;Wei Liu;Dawei Wu;Hu Ye","doi":"10.1109/OJUFFC.2022.3188746","DOIUrl":null,"url":null,"abstract":"Flexible ultrasound array with phased array configurations have individually controllable array element emission and reception acoustic properties, however array conventional processes and array design are too complex. It is necessary to explore rapid creation methods and potential ultrasound applications for flexible arrays. In this paper, we provide a method for rapid fabrication of flexible transducers based on laser micromachining and verify the performance of the line array by multi-mode positioning imaging under curved surfaces. The proposed single-layered and double-sided conductive stretchable electrode configuration eliminated the blockage of acoustic waves,and ’island bridge’ structures are compatible with array flexibility and array excitation for row addressing.The mechanical, acoustic and electrical interconnections of the array are verified.Based on the Verasonics system, the ultrasonic line array scans multiple steel column targets in multiple modalities under curved surfaces for imaging and localization.The results show that the ultrasonic line array can obtain clear visual localization images in A-scan, B-scan and E-scan poses.In addition, the artifacts in the images can be effectively suppressed by adjusting the depth of focus of E-scan and optimizing the sparse line array structure. It is verified that laser micromachining for rapid creation of flexible ultrasonic line array has potential applications in the field of localization imaging.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"2 ","pages":"131-139"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9819962","citationCount":"0","resultStr":"{\"title\":\"Laser Micromachined Flexible Ultrasound Line Array and Subplanar Multimodal Imaging Applications\",\"authors\":\"Jianzhong Chen;Wei Liu;Dawei Wu;Hu Ye\",\"doi\":\"10.1109/OJUFFC.2022.3188746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible ultrasound array with phased array configurations have individually controllable array element emission and reception acoustic properties, however array conventional processes and array design are too complex. It is necessary to explore rapid creation methods and potential ultrasound applications for flexible arrays. In this paper, we provide a method for rapid fabrication of flexible transducers based on laser micromachining and verify the performance of the line array by multi-mode positioning imaging under curved surfaces. The proposed single-layered and double-sided conductive stretchable electrode configuration eliminated the blockage of acoustic waves,and ’island bridge’ structures are compatible with array flexibility and array excitation for row addressing.The mechanical, acoustic and electrical interconnections of the array are verified.Based on the Verasonics system, the ultrasonic line array scans multiple steel column targets in multiple modalities under curved surfaces for imaging and localization.The results show that the ultrasonic line array can obtain clear visual localization images in A-scan, B-scan and E-scan poses.In addition, the artifacts in the images can be effectively suppressed by adjusting the depth of focus of E-scan and optimizing the sparse line array structure. It is verified that laser micromachining for rapid creation of flexible ultrasonic line array has potential applications in the field of localization imaging.\",\"PeriodicalId\":73301,\"journal\":{\"name\":\"IEEE open journal of ultrasonics, ferroelectrics, and frequency control\",\"volume\":\"2 \",\"pages\":\"131-139\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9819962\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of ultrasonics, ferroelectrics, and frequency control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9819962/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9819962/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用相控阵结构的柔性超声阵列具有独立可控的阵元发射和接收声学特性,但阵元常规工艺和阵元设计过于复杂。有必要探索柔性阵列的快速制作方法和潜在的超声应用。本文提出了一种基于激光微加工的柔性换能器快速制造方法,并通过曲面下多模定位成像验证了线阵的性能。提出的单层和双面导电可拉伸电极结构消除了声波的阻塞,“岛桥”结构与阵列灵活性和阵列激励相兼容,用于行寻址。验证了阵列的机械、声学和电气互连性。基于Verasonics系统,超声线阵在曲面下以多模态扫描多个钢柱目标进行成像和定位。结果表明,超声线阵在a扫描、b扫描和e扫描姿态下均能获得清晰的视觉定位图像。此外,通过调整e扫描的聚焦深度和优化稀疏线阵列结构,可以有效地抑制图像中的伪影。验证了激光微加工快速制造柔性超声线阵在定位成像领域具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laser Micromachined Flexible Ultrasound Line Array and Subplanar Multimodal Imaging Applications
Flexible ultrasound array with phased array configurations have individually controllable array element emission and reception acoustic properties, however array conventional processes and array design are too complex. It is necessary to explore rapid creation methods and potential ultrasound applications for flexible arrays. In this paper, we provide a method for rapid fabrication of flexible transducers based on laser micromachining and verify the performance of the line array by multi-mode positioning imaging under curved surfaces. The proposed single-layered and double-sided conductive stretchable electrode configuration eliminated the blockage of acoustic waves,and ’island bridge’ structures are compatible with array flexibility and array excitation for row addressing.The mechanical, acoustic and electrical interconnections of the array are verified.Based on the Verasonics system, the ultrasonic line array scans multiple steel column targets in multiple modalities under curved surfaces for imaging and localization.The results show that the ultrasonic line array can obtain clear visual localization images in A-scan, B-scan and E-scan poses.In addition, the artifacts in the images can be effectively suppressed by adjusting the depth of focus of E-scan and optimizing the sparse line array structure. It is verified that laser micromachining for rapid creation of flexible ultrasonic line array has potential applications in the field of localization imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信