Orestis Liolis;Vassilios A. Mardiris;Ioannis G. Karafyllidis;Sorin Cotofana;Georgios Ch. Sirakoulis
{"title":"量子点元胞自动机电路的自动化设计方法","authors":"Orestis Liolis;Vassilios A. Mardiris;Ioannis G. Karafyllidis;Sorin Cotofana;Georgios Ch. Sirakoulis","doi":"10.1109/OJNANO.2022.3223413","DOIUrl":null,"url":null,"abstract":"Quantum-dot Cellular Automata (QCA) provide very high scale integration potential, very high switching frequency, and have extremely low power demands, which make the QCA technology quite attractive for the design and implementation of large-scale, high-performance nanoelectronic circuits. However, state-of-the-art QCA circuit designs were not derived by following a set of universal design rules, as is the case of CMOS circuits, and, as a result, it is either impossible or very difficult to combine QCA circuit blocks in effective large-scale circuits. In this paper, we introduce a novel automated design methodology, which builds upon a QCA specific universal design rules set. The proposed methodology assumes the availability of a generic QCA crossbar architecture and provides the means to customize it in order to implement any given logic function. The programming principles and the flow of the proposed automated design tool for crossbar QCA circuits are described analytically and we apply the proposed automated design method for the design of both combinatorial and sequential circuits. The obtained designs demonstrate that the proposed method is functional, easy to use, and provides the desired QCA circuit design unification.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"162-171"},"PeriodicalIF":1.8000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9968311","citationCount":"0","resultStr":"{\"title\":\"Methodology for Automated Design of Quantum-Dot Cellular Automata Circuits\",\"authors\":\"Orestis Liolis;Vassilios A. Mardiris;Ioannis G. Karafyllidis;Sorin Cotofana;Georgios Ch. Sirakoulis\",\"doi\":\"10.1109/OJNANO.2022.3223413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum-dot Cellular Automata (QCA) provide very high scale integration potential, very high switching frequency, and have extremely low power demands, which make the QCA technology quite attractive for the design and implementation of large-scale, high-performance nanoelectronic circuits. However, state-of-the-art QCA circuit designs were not derived by following a set of universal design rules, as is the case of CMOS circuits, and, as a result, it is either impossible or very difficult to combine QCA circuit blocks in effective large-scale circuits. In this paper, we introduce a novel automated design methodology, which builds upon a QCA specific universal design rules set. The proposed methodology assumes the availability of a generic QCA crossbar architecture and provides the means to customize it in order to implement any given logic function. The programming principles and the flow of the proposed automated design tool for crossbar QCA circuits are described analytically and we apply the proposed automated design method for the design of both combinatorial and sequential circuits. The obtained designs demonstrate that the proposed method is functional, easy to use, and provides the desired QCA circuit design unification.\",\"PeriodicalId\":446,\"journal\":{\"name\":\"IEEE Open Journal of Nanotechnology\",\"volume\":\"4 \",\"pages\":\"162-171\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9968311\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9968311/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9968311/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Methodology for Automated Design of Quantum-Dot Cellular Automata Circuits
Quantum-dot Cellular Automata (QCA) provide very high scale integration potential, very high switching frequency, and have extremely low power demands, which make the QCA technology quite attractive for the design and implementation of large-scale, high-performance nanoelectronic circuits. However, state-of-the-art QCA circuit designs were not derived by following a set of universal design rules, as is the case of CMOS circuits, and, as a result, it is either impossible or very difficult to combine QCA circuit blocks in effective large-scale circuits. In this paper, we introduce a novel automated design methodology, which builds upon a QCA specific universal design rules set. The proposed methodology assumes the availability of a generic QCA crossbar architecture and provides the means to customize it in order to implement any given logic function. The programming principles and the flow of the proposed automated design tool for crossbar QCA circuits are described analytically and we apply the proposed automated design method for the design of both combinatorial and sequential circuits. The obtained designs demonstrate that the proposed method is functional, easy to use, and provides the desired QCA circuit design unification.