{"title":"基于故障定位和部分重构的热备拓扑自修复带前瞻加法器","authors":"Muhammad Ali Akbar;Bo Wang;Amine Bermak","doi":"10.1109/OJCAS.2022.3161873","DOIUrl":null,"url":null,"abstract":"In this paper, a self-checking and -repairing carry-lookahead adder (CLA) is proposed with distributed fault detection ability. The presented design with self-checking and fault localization ability requires an area overhead of 69.6% as compared to the conventional CLA. It can handle multiple faults simultaneously without affecting the delay of conventional CLA, with the condition that each module has a single fault at a time. The repairing operation utilizes the hot-standby approach with partial reconfiguration in which the faulty module would be replaced by an accurately functioning module at run-time. The proposed self-repairing adder with high fault coverage requires 161.5% area overhead as compared to conventional CLA design which is 35.3% less as compared to the state-of-the-art partial self-repairing CLA. Moreover, the delay of the proposed 64-bit self-repairing CLA is 40.7% more efficient as compared to conventional ripple carry adder.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9740253","citationCount":"2","resultStr":"{\"title\":\"Self-Repairing Carry-Lookahead Adder With Hot-Standby Topology Using Fault-Localization and Partial Reconfiguration\",\"authors\":\"Muhammad Ali Akbar;Bo Wang;Amine Bermak\",\"doi\":\"10.1109/OJCAS.2022.3161873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a self-checking and -repairing carry-lookahead adder (CLA) is proposed with distributed fault detection ability. The presented design with self-checking and fault localization ability requires an area overhead of 69.6% as compared to the conventional CLA. It can handle multiple faults simultaneously without affecting the delay of conventional CLA, with the condition that each module has a single fault at a time. The repairing operation utilizes the hot-standby approach with partial reconfiguration in which the faulty module would be replaced by an accurately functioning module at run-time. The proposed self-repairing adder with high fault coverage requires 161.5% area overhead as compared to conventional CLA design which is 35.3% less as compared to the state-of-the-art partial self-repairing CLA. Moreover, the delay of the proposed 64-bit self-repairing CLA is 40.7% more efficient as compared to conventional ripple carry adder.\",\"PeriodicalId\":93442,\"journal\":{\"name\":\"IEEE open journal of circuits and systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9740253\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9740253/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9740253/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Self-Repairing Carry-Lookahead Adder With Hot-Standby Topology Using Fault-Localization and Partial Reconfiguration
In this paper, a self-checking and -repairing carry-lookahead adder (CLA) is proposed with distributed fault detection ability. The presented design with self-checking and fault localization ability requires an area overhead of 69.6% as compared to the conventional CLA. It can handle multiple faults simultaneously without affecting the delay of conventional CLA, with the condition that each module has a single fault at a time. The repairing operation utilizes the hot-standby approach with partial reconfiguration in which the faulty module would be replaced by an accurately functioning module at run-time. The proposed self-repairing adder with high fault coverage requires 161.5% area overhead as compared to conventional CLA design which is 35.3% less as compared to the state-of-the-art partial self-repairing CLA. Moreover, the delay of the proposed 64-bit self-repairing CLA is 40.7% more efficient as compared to conventional ripple carry adder.