{"title":"二维四元稀疏判别分析","authors":"Xiaolin Xiao, Yongyong Chen, Yue-Jiao Gong, Yicong Zhou","doi":"10.1109/TIP.2019.2947775","DOIUrl":null,"url":null,"abstract":"<p><p>Linear discriminant analysis has been incorporated with various representations and measurements for dimension reduction and feature extraction. In this paper, we propose two-dimensional quaternion sparse discriminant analysis (2D-QSDA) that meets the requirements of representing RGB and RGB-D images. 2D-QSDA advances in three aspects: 1) including sparse regularization, 2D-QSDA relies only on the important variables, and thus shows good generalization ability to the out-of-sample data which are unseen during the training phase; 2) benefited from quaternion representation, 2D-QSDA well preserves the high order correlation among different image channels and provides a unified approach to extract features from RGB and RGB-D images; 3) the spatial structure of the input images is retained via the matrix-based processing. We tackle the constrained trace ratio problem of 2D-QSDA by solving a corresponding constrained trace difference problem, which is then transformed into a quaternion sparse regression (QSR) model. Afterward, we reformulate the QSR model to an equivalent complex form to avoid the processing of the complicated structure of quaternions. A nested iterative algorithm is designed to learn the solution of 2D-QSDA in the complex space and then we convert this solution back to the quaternion domain. To improve the separability of 2D-QSDA, we further propose 2D-QSDAw using the weighted pairwise between-class distances. Extensive experiments on RGB and RGB-D databases demonstrate the effectiveness of 2D-QSDA and 2D-QSDAw compared with peer competitors.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional Quaternion Sparse Discriminant Analysis.\",\"authors\":\"Xiaolin Xiao, Yongyong Chen, Yue-Jiao Gong, Yicong Zhou\",\"doi\":\"10.1109/TIP.2019.2947775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Linear discriminant analysis has been incorporated with various representations and measurements for dimension reduction and feature extraction. In this paper, we propose two-dimensional quaternion sparse discriminant analysis (2D-QSDA) that meets the requirements of representing RGB and RGB-D images. 2D-QSDA advances in three aspects: 1) including sparse regularization, 2D-QSDA relies only on the important variables, and thus shows good generalization ability to the out-of-sample data which are unseen during the training phase; 2) benefited from quaternion representation, 2D-QSDA well preserves the high order correlation among different image channels and provides a unified approach to extract features from RGB and RGB-D images; 3) the spatial structure of the input images is retained via the matrix-based processing. We tackle the constrained trace ratio problem of 2D-QSDA by solving a corresponding constrained trace difference problem, which is then transformed into a quaternion sparse regression (QSR) model. Afterward, we reformulate the QSR model to an equivalent complex form to avoid the processing of the complicated structure of quaternions. A nested iterative algorithm is designed to learn the solution of 2D-QSDA in the complex space and then we convert this solution back to the quaternion domain. To improve the separability of 2D-QSDA, we further propose 2D-QSDAw using the weighted pairwise between-class distances. Extensive experiments on RGB and RGB-D databases demonstrate the effectiveness of 2D-QSDA and 2D-QSDAw compared with peer competitors.</p>\",\"PeriodicalId\":13217,\"journal\":{\"name\":\"IEEE Transactions on Image Processing\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2019-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TIP.2019.2947775\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2947775","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Linear discriminant analysis has been incorporated with various representations and measurements for dimension reduction and feature extraction. In this paper, we propose two-dimensional quaternion sparse discriminant analysis (2D-QSDA) that meets the requirements of representing RGB and RGB-D images. 2D-QSDA advances in three aspects: 1) including sparse regularization, 2D-QSDA relies only on the important variables, and thus shows good generalization ability to the out-of-sample data which are unseen during the training phase; 2) benefited from quaternion representation, 2D-QSDA well preserves the high order correlation among different image channels and provides a unified approach to extract features from RGB and RGB-D images; 3) the spatial structure of the input images is retained via the matrix-based processing. We tackle the constrained trace ratio problem of 2D-QSDA by solving a corresponding constrained trace difference problem, which is then transformed into a quaternion sparse regression (QSR) model. Afterward, we reformulate the QSR model to an equivalent complex form to avoid the processing of the complicated structure of quaternions. A nested iterative algorithm is designed to learn the solution of 2D-QSDA in the complex space and then we convert this solution back to the quaternion domain. To improve the separability of 2D-QSDA, we further propose 2D-QSDAw using the weighted pairwise between-class distances. Extensive experiments on RGB and RGB-D databases demonstrate the effectiveness of 2D-QSDA and 2D-QSDAw compared with peer competitors.
期刊介绍:
The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.