离散Mumford-Shah模型的半线性化近端交替极小化

IF 10.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Marion Foare, N. Pustelnik, Laurent Condat
{"title":"离散Mumford-Shah模型的半线性化近端交替极小化","authors":"Marion Foare, N. Pustelnik, Laurent Condat","doi":"10.1109/TIP.2019.2944561","DOIUrl":null,"url":null,"abstract":"The Mumford–Shah model is a standard model in image segmentation, and due to its difficulty, many approximations have been proposed. The major interest of this functional is to enable joint image restoration and contour detection. In this work, we propose a general formulation of the discrete counterpart of the Mumford–Shah functional, adapted to nonsmooth penalizations, fitting the assumptions required by the Proximal Alternating Linearized Minimization (PALM), with convergence guarantees. A second contribution aims to relax some assumptions on the involved functionals and derive a novel Semi-Linearized Proximal Alternated Minimization (SL-PAM) algorithm, with proved convergence. We compare the performances of the algorithm with several nonsmooth penalizations, for Gaussian and Poisson denoising, image restoration and RGB-color denoising. We compare the results with state-of-the-art convex relaxations of the Mumford–Shah functional, and a discrete version of the Ambrosio–Tortorelli functional. We show that the SL-PAM algorithm is faster than the original PALM algorithm, and leads to competitive denoising, restoration and segmentation results.","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":"2176-2189"},"PeriodicalIF":10.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TIP.2019.2944561","citationCount":"24","resultStr":"{\"title\":\"Semi-Linearized Proximal Alternating Minimization for a Discrete Mumford–Shah Model\",\"authors\":\"Marion Foare, N. Pustelnik, Laurent Condat\",\"doi\":\"10.1109/TIP.2019.2944561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Mumford–Shah model is a standard model in image segmentation, and due to its difficulty, many approximations have been proposed. The major interest of this functional is to enable joint image restoration and contour detection. In this work, we propose a general formulation of the discrete counterpart of the Mumford–Shah functional, adapted to nonsmooth penalizations, fitting the assumptions required by the Proximal Alternating Linearized Minimization (PALM), with convergence guarantees. A second contribution aims to relax some assumptions on the involved functionals and derive a novel Semi-Linearized Proximal Alternated Minimization (SL-PAM) algorithm, with proved convergence. We compare the performances of the algorithm with several nonsmooth penalizations, for Gaussian and Poisson denoising, image restoration and RGB-color denoising. We compare the results with state-of-the-art convex relaxations of the Mumford–Shah functional, and a discrete version of the Ambrosio–Tortorelli functional. We show that the SL-PAM algorithm is faster than the original PALM algorithm, and leads to competitive denoising, restoration and segmentation results.\",\"PeriodicalId\":13217,\"journal\":{\"name\":\"IEEE Transactions on Image Processing\",\"volume\":\"29 1\",\"pages\":\"2176-2189\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TIP.2019.2944561\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TIP.2019.2944561\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2944561","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 24

摘要

Mumford-Shah模型是图像分割中的一种标准模型,由于其难度大,人们提出了许多近似方法。该功能的主要目的是实现联合图像恢复和轮廓检测。在这项工作中,我们提出了Mumford-Shah泛函的离散对应的一般公式,适用于非光滑惩罚,拟合具有收敛保证的邻域交替线性化最小化(PALM)所需的假设。第二个贡献旨在放宽对所涉及的泛函的一些假设,并推导出一种新的半线性化近端交替最小化(SL-PAM)算法,并证明了收敛性。在高斯和泊松去噪、图像恢复和rgb颜色去噪方面,我们比较了该算法与几种非光滑惩罚的性能。我们将结果与Mumford-Shah泛函的最先进的凸松弛和Ambrosio-Tortorelli泛函的离散版本进行比较。研究表明,SL-PAM算法比原始的PALM算法速度更快,并且在去噪、恢复和分割结果上具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-Linearized Proximal Alternating Minimization for a Discrete Mumford–Shah Model
The Mumford–Shah model is a standard model in image segmentation, and due to its difficulty, many approximations have been proposed. The major interest of this functional is to enable joint image restoration and contour detection. In this work, we propose a general formulation of the discrete counterpart of the Mumford–Shah functional, adapted to nonsmooth penalizations, fitting the assumptions required by the Proximal Alternating Linearized Minimization (PALM), with convergence guarantees. A second contribution aims to relax some assumptions on the involved functionals and derive a novel Semi-Linearized Proximal Alternated Minimization (SL-PAM) algorithm, with proved convergence. We compare the performances of the algorithm with several nonsmooth penalizations, for Gaussian and Poisson denoising, image restoration and RGB-color denoising. We compare the results with state-of-the-art convex relaxations of the Mumford–Shah functional, and a discrete version of the Ambrosio–Tortorelli functional. We show that the SL-PAM algorithm is faster than the original PALM algorithm, and leads to competitive denoising, restoration and segmentation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Image Processing
IEEE Transactions on Image Processing 工程技术-工程:电子与电气
CiteScore
20.90
自引率
6.60%
发文量
774
审稿时长
7.6 months
期刊介绍: The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信