{"title":"学习用于轮廓检测的非经典感知场调制","authors":"Qiling Tang, Nong Sang, Haihua Liu","doi":"10.1109/TIP.2019.2940690","DOIUrl":null,"url":null,"abstract":"<p><p>This work develops a biologically inspired neural network for contour detection in natural images by combining the nonclassical receptive field modulation mechanism with a deep learning framework. The input image is first convolved with the local feature detectors to produce the classical receptive field responses, and then a corresponding modulatory kernel is constructed for each feature map to model the nonclassical receptive field modulation behaviors. The modulatory effects can activate a larger cortical area and thus allow cortical neurons to integrate a broader range of visual information to recognize complex cases. Additionally, to characterize spatial structures at various scales, a multiresolution technique is used to represent visual field information from fine to coarse. Different scale responses are combined to estimate the contour probability. Our method achieves state-of-the-art results among all biologically inspired contour detection models. This study provides a method for improving visual modeling of contour detection and inspires new ideas for integrating more brain cognitive mechanisms into deep neural networks.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Nonclassical Receptive Field Modulation for Contour Detection.\",\"authors\":\"Qiling Tang, Nong Sang, Haihua Liu\",\"doi\":\"10.1109/TIP.2019.2940690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work develops a biologically inspired neural network for contour detection in natural images by combining the nonclassical receptive field modulation mechanism with a deep learning framework. The input image is first convolved with the local feature detectors to produce the classical receptive field responses, and then a corresponding modulatory kernel is constructed for each feature map to model the nonclassical receptive field modulation behaviors. The modulatory effects can activate a larger cortical area and thus allow cortical neurons to integrate a broader range of visual information to recognize complex cases. Additionally, to characterize spatial structures at various scales, a multiresolution technique is used to represent visual field information from fine to coarse. Different scale responses are combined to estimate the contour probability. Our method achieves state-of-the-art results among all biologically inspired contour detection models. This study provides a method for improving visual modeling of contour detection and inspires new ideas for integrating more brain cognitive mechanisms into deep neural networks.</p>\",\"PeriodicalId\":13217,\"journal\":{\"name\":\"IEEE Transactions on Image Processing\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2019-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TIP.2019.2940690\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2940690","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Learning Nonclassical Receptive Field Modulation for Contour Detection.
This work develops a biologically inspired neural network for contour detection in natural images by combining the nonclassical receptive field modulation mechanism with a deep learning framework. The input image is first convolved with the local feature detectors to produce the classical receptive field responses, and then a corresponding modulatory kernel is constructed for each feature map to model the nonclassical receptive field modulation behaviors. The modulatory effects can activate a larger cortical area and thus allow cortical neurons to integrate a broader range of visual information to recognize complex cases. Additionally, to characterize spatial structures at various scales, a multiresolution technique is used to represent visual field information from fine to coarse. Different scale responses are combined to estimate the contour probability. Our method achieves state-of-the-art results among all biologically inspired contour detection models. This study provides a method for improving visual modeling of contour detection and inspires new ideas for integrating more brain cognitive mechanisms into deep neural networks.
期刊介绍:
The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.